跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/03 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施効谷
研究生(外文):Hsiao-Ku Shih
論文名稱:多層膜p-i-n太陽電池與耐高溫太陽光吸收膜
論文名稱(外文):Multilayer p-i-n solar cells and high-temperature resistant solar absorption films
指導教授:江雨龍江雨龍引用關係
口試委員:劉漢文黃家華蕭錫鍊裴靜偉
口試日期:2020-07-28
學位類別:博士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:110
中文關鍵詞:氫化非晶矽a-Si:Hx/a-Si:Hy多層膜多層膜薄膜矽薄膜太陽電池耐高溫吸收膜奈米多孔洞結構
外文關鍵詞:Hydrogenated amorphous siliconsilicon-hydrogen bondsa-Si:Hx/a-Si:Hy multilayerp-i-n solar cellRF powernano-porous polysiliconsolar absorption filmsilver nanoparticlescatalytic chemical etching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為兩個部分,(一)多層膜p-i-n太陽電池及(二)耐高溫太陽光吸收膜兩個部分
(一) 多層膜p-i-n太陽電池:
使用電漿加強化學氣相沉積(Plasma enhanced chemical vapor deposition, PECVD)法沉積a-Si:Hx/a-Si:Hy多層膜結構,不同的矽氫鍵結結構做週期性的空間分佈,藉以控制薄膜的結構、光學及電學特性。製作不同厚度配比A/B子層的a-Si:Hx/a-Si:Hy多層膜結構。製程的參數為氫稀釋比(R)為0,功率(P)為10及45W及電漿開啟時間(ton) 20 ms及電漿關閉時間(toff) 5 ms (頻率為40 Hz,週期為80 %)進行單層薄(A子層與B子層)膜製作,並量測其單層膜薄的光學與結構特性。a-Si:Hx/a-Si:Hy參數調變不同功率10、45 W,沉積A子層10 W的a-Si:Hx及B子層45 W的a-Si:Hy,並調變A/B子層厚度為5nm/5nm、5nm/10nm、10nm/5nm,並以此多層膜運用於i層,控制及改善氫化非晶矽薄膜太陽電池的電流電壓特性及穩定性,並探討A/B各層不同特性控制及組合對太陽電池特性改變的影響。
電流電壓(I-V)結果表明,低射頻的電池功率沉積的單i層具有較高的開路電壓(Voc),但具有較低的短路電流密度(Jsc)和填充因子(FF)。高射頻功率沉積的單i層具有較低的Voc,但具有較高的Jsc和FF。a-Si:Hx/a-Si:Hy(A/B)多層i層的Voc,Jsc和FF的變化與子層A與子層B的厚度比有關,厚度優化Voc,Jsc和FF並得最大輸出功率的比率。以週期性地改變RF功率來製造a-Si:Hx/a-Si:Hy多層結構,調變其厚度比,控制a-Si:Hx/a-Si:Hy多層p-i-n太陽能電池的I-V特性。增加子層A的比率會提高Voc,但Jsc及FF會下降,反之增加子層B的比率會降低Voc,但Jsc及FF會上升。

(二) 耐高溫太陽光吸收膜:
耐高溫吸收膜部分:通過銀奈米顆粒催化蝕刻製作奈米孔洞結構的耐高溫多晶矽吸收膜。使用電漿加強化學氣相沉積(Plasma enhanced chemical vapor deposition, PECVD)法在304不銹鋼基板上沉積氫化非晶矽(a-Si:H)薄膜,接著在通入氮氣的爐管中進行高溫800°C進行退火,非晶矽(a-Si:H)轉換成多晶矽(poly-Si),得到平均多晶矽晶粒大小約為30 nm。接著使用熱蒸鍍法在多晶矽膜上沉積銀奈米顆粒,沉積速率0.4 nm/min,銀奈米顆粒厚度約為4 nm,銀奈米顆粒間隔約8 nm,銀奈米顆粒尺寸約19 nm,具有間距較小銀的奈米顆粒,誘發了具有深度較深的螺紋奈米多孔的結構。蝕刻沿著晶界的軌跡,形成高度彎曲的螺紋狀結構型態。該結構由靠近表面的三個晶體取向(111),(220)和(331)組成。這種結晶性在整個吸收薄膜中逐漸減少。由於此結構具備有效的光捕捉,獲得了95%的高吸收率與放射率43%。加入鎳金屬層,通過加入金屬層使得遠紅外光反射率提升,有效的降低了放射率至30%,但其吸收薄膜結構不同使得吸收率降至89%。通過銀粒子誘發蝕刻的方法製備可耐800°C高溫的奈米多孔洞多晶矽膜可以有效地增加太陽光的吸收。
This thesis have been two researches on (I) multilayer p-i-n solar cells and (II) high temperature absorption film:
(I) Hydrogenated amorphous silicon thin films with different silicon-hydrogen bonds of a-Si:Hx/a-Si:Hy (A/B) multilayer structures and TCO/p/i(a-Si:Hx/a-Si:Hy)/n/Al p-i-n solar cells were fabricated by periodical modulation of RF power of plasma enhanced chemical vapor deposition (PECVD). The contrary change of bandgap (Eg), refractive index (n), dielectric constants (Ɛ), Si-H bonds microstructure and hydrogen content of single i-layer were controlled by low (A: 10 W) and high (B: 45 W) RF power, respectively. These structural and optical properties of a-Si:Hx/a-Si:Hy(A/B) multilayer structures could be fine-tuned by the combination of different thickness ratio of the sublayer A with sublayer B. The i layer of the p-i-n solar cells were fabricated by single i-layer deposited by low and high power as the reference, and the multilayers with the different thickness ratio of the sublayer A with sublayer B. The current-voltage (I-V) results show that the cell of low RF power deposited single i-layer has the high open-circuit voltage (Voc), but the low short-circuit current density (Jsc) and fill factor (FF). Conversely, high RF power deposited single i-layer has the low Voc, but the high Jsc and FF. The variation of Voc, Jsc, and FF of the a-Si:Hx/a-Si:Hy (A/B) multilayer i-layer is related to the thickness ratio of the sublayer A with sublayer B. There is an optimization thickness ratio that obtain the maximum output power with optimization values of Voc, Jsc, and FF. The abrupt change of a-Si:Hx/a-Si:Hy multilayer structure can be fabricated by periodically variation of RF power. The I-V characteristics of the a-Si:Hx/a-Si:Hy multilayer p-i-n solar cells can be well controlled by modulation of its thickness ratio. Increasing the ratio of sublayer A will increase Voc, but Jsc and FF will decrease. On the contrary, increasing the ratio of sublayer B will decrease Voc, but Jsc and FF will increase.
(II) Nano-porous polysilicon high-temperature resistant solar absorption films were prepared by a thin layer of silver nanoparticles catalytic chemical etching. The polysilicon films with average tiny grain size of approximately 30 nm were obtained by high-temperature 800°C furnace annealing of hydrogenated amorphous silicon films that were deposited on stainless substrate by PECVD. The uniformly distributed 19 nm sized silver nanoparticles with 8 nm interspacing deposited on poly-Si film, were controlled by thin 4 nm thickness and very slow deposition rate 0.4 nm/min of thermal evaporation. Small silver nanoparticles with short spacing catalyzes the detouring etching process inducing the nano-porous textured surface with deep threaded pores. The etching follows the trail of the grain boundaries, and takes a highly curved thread like structure. The etching stops after reaching a depth of around 1100 nm, and the rest of the bulk thickness of the film remains mostly unaffected. The structure consists of three crystal orientations (111), (220), and (331) close to the surface. This crystalline nature diminishes gradually in the bulk of the film. High absorbance of 95 % was obtained due to efficient light-trapping. The nickel metal layer was added, and the far-infrared light reflectivity was increased by adding the metal layer, which effectively reduced the emissivity to 30%, but the different absorption film structure reduced the absorptivity to 89%. Hence, preparation of nano-porous polysilicon films by this simple method can effectively increase solar absorption for the receiver of the solar thermal electricity Stirling Engine.
目錄
致謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 實驗動機 2
1.3 實驗目的 4
1.4 論文架構 5
第二章 文獻探討 6
2.1 太陽電池文獻回顧 6
2.1.1 氫化奈米晶矽成長機制及特性 6
2.1.2 氫稀釋比對於氫化奈米晶矽結構影響. 8
2.1.3 功率對於氫化奈米晶矽結構影響 9
2.1.4 脈波調變對於薄膜結構影響 10
2.1.5 矽基超晶格製程現況 11
2.2耐高溫吸收膜文獻回顧 16
2.2.1 耐高溫吸收薄膜 16
第三章 研究方法 26
3.1 多層膜p-i-n太陽電池 26
3.1.1 多層膜p-i-n太陽電池實驗流程 27
3.1.2 多層膜p-i-n太陽電池實驗設備 28
3.1.3 多層膜p-i-n太陽電池基板的清洗: 30
3.1.4多層膜p-i-n太陽電池量測儀器 32
3.1.5多層膜p-i-n太陽電池實驗參數設計 37
3.2 耐高溫吸收模與太陽電池製作方法 42
3.2.1耐高溫吸收膜薄膜實驗流程 43
3.2.2 高溫吸收模實驗設備 43
3.2.3耐高溫吸收模試片清洗 45
3.2.4耐高溫吸收模量測儀器 46
3.2.5耐高溫吸收模實驗參數設計 52
第四章 p-i-n太陽電池結果與討論 55
4.1 10W子層A(a-Si:Hx)、45W子層B(a-Si:Hy)與不同厚度配比5nm_5nm、5nm_10nm、10nm_5nm之單層薄膜SE量測 55
4.2 單層A子層(a-Si:Hx)、單層B子層(a-Si:Hy)與不同厚度配比之 FTIR量測 61
4.3 A子層(a-Si:Hx)/B子層(a-Si:Hy)不同厚度配比之多層膜量測XRD 68
4.4 A子層(a-Si:Hx)/B子層(a-Si:Hy) 多層膜拍攝TEM表面形貌 70
4.5 10W子層A(a-Si:Hx)與45W子層B(a-Si:Hy)太陽電池元件特性探討 76
4.6 A子層(a-Si:Hx)/B子層(a-Si:Hy)單層膜與多層膜5nm/5nm、5nm/10nm、10nm/5nm量子效率探討 80
4.7 A子層(a-Si:Hx)/B子層(a-Si:Hy)單層膜與多層膜5nm/5nm、5nm/10nm、10nm/5nm Dark I-V討論 82
4.8 不同厚度配比為5nm/5nm、5nm/10nm、10nm/5nm SIMS縱深分析 84
第五章 耐高溫吸收膜結果與討論 87
5.1 非晶矽轉多晶矽退火步驟 87
5.2 不同銀蒸鍍時間 89
5.3 不同銀蒸鍍時間蝕刻 91
5.4 不同蝕刻H2O2+HF+H2O時間 94
5.5 耐高溫吸收薄膜添加鎳金屬製程 99
第六章 結論 104
p-i-n多層膜太陽電池結論: 104
耐高溫吸收模實驗結論: 104
第七章 未來工作 106
參考文獻 107
著作目錄 110
[1].Yoshikawa, K., H. Kawasaki, et al. (2017). "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%." Nature Energy, 2(5).
[2].Kale, A. S., W. Nemeth, et al. (2018). "Effect of silicon oxide thickness on polysilicon based passivated contacts for high-efficiency crystalline silicon solar cells." Solar Energy Materials and Solar Cells, 185: p.p. 270-276.
[3].Ren, N., J. Zhu, et al. (2018). "Controlling performance of a-Si:H solar cell with SnO2:F front electrode by introducing dual p-layers with p-a-SiO :H/p-nc-SiO :H nanostructure." Solar Energy 171: p.p. 907-913.
[4].K. Zellama. et al. (1996). “Hydrogen-effusion-induced structural changes and defects in a-Si:H films:Dependence upon the film microstructure”, Phys. Rev. 53, 7 3804.
[5].L.S. Sidhu, S. Zukotynski, (1999), “Monohydride clustering in the amorphous silicon matrix”, Journal of Non-Crystalline Solids 246, p.p. 65-72.
[6].A. Shah , et al. (2000),” Intrinsic microcrystalline silicon (mc-Si:H) deposited by VHF-GD (very high frequency-glow discharge): a new material for photovoltaics and optoelectronics”, Materials Science and Engineering B 69-70, p.p. 219-226.
[7].Jeong Chul Lee. et al. (2000), Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE15-22 Sept. Page(s):896 - 899
[8].Schropp, R.E.I., and M. Zeman, (1998), “Amorphous and Microcrystalline Silicon Solar Cells”, Kluwer Academic publishers, Boston, P.47.
[9].Yeu-Long Jiang, Pei-Tzong Shih and Tai-Chao Kuo, (2008), Appl. Phys. Lett. 92(10), 101915.
[10].Kai-Yi Hong, Yeu-Long Jiang, Tai-Chao Kuo, Tzu-Chin Hsu, (2008). “p/i(a-Si:Hx/a-Si:Hy superlattices)/n solar cells prepared by periodical switching rf plasma,” 2008 International Electron Devices and Materials Symposia, Taichung, Taiwan, R.O.C., Nov. 28-29, EO-674.
[11].Chia-Wei Huang, Hsuan-Mei Weng, Yeu-Long Jiang, Herng-Yih Ueng, "Optimum growth of ZnSe film by molecular beam deposition," Vacuum 83, 313-318 . (SCI, EI)
[12].R. K. Shaltens and J. G. Schreiber, “Comparison of conceptual designs for 25 kW advanced Stirling conversion systems for dish electric applications,” IEEE xplore, 899547.
[13].J. Moreno et al. (2002), “Dish/Stirling hybrid-heat-pipe-receiver design and test results,” 2002 37th Intersociety Energy Conversion Engineering Conference, paper No. 20147.
[14].D. Laing and M. Reusch, “hybrid sodium heat pipe receivers for Dish/Stirling systems,” IEEE xplore, 97520.
[15].J. B. Kesseli and D. E. Lacy, “The cavity heat pipe Stirling receiver for space solar dynamics,” IEEE xplore, 899187.
[16].R. Biswas, D. Zhou, B. Curtin, N. Chakravarty, V. Dalal, (2009),” SURFACE PLASMON ENHANCEMENT OF OPTICAL ABSORPTION OF THIN FILM A-SI:H SOLAR CELLS” IEEE, Page(s): 000557-000560.
[17].Hao-Wei Han, Min-An Tsai, Ping-Chen Tseng, Yu-Lin Tsai, Liang-Hao Jin, Hsin-Chu Chen, Hsun-Wen Wang, Chien-Chung Lin, Peichen Yu, and Hao-Chung Kuo, (2011).” BROADBAND ABSORPTION ENHANCEMENT USING FRONT PRE-PATTERNED SUBSTRATE FOR THIN FILM AMORPHOUS SILICON SOLAR CELL”, IEEE, Page(s): 000866-000869.
[18].H. Zoubos, L.E.Koutsokeras, D.F.Anagnostopoulos, E.Lidorikis, S.A.Kalogirou, A.R.Wildes, P.C.Kelires, P.Patsalas, (2013). “Broadband optical absorption of amorphous carbon/Ag nano composite films and its potential for solar harvesting applications”, Solar Energy Materials & Solar Cells117, p.p. 350-356.
[19].R. Sidharthan, V.M. Murukeshan, (2013).” Improved light absorption in thin film solar cell using combination of gap modes and grating back reflector”, Thin Solid Films 548 , p.p. 581-584.
[20].Lei Hong,*, Rusli, Xincai Wang, Hao Wang, Xiaoyan Xu, Lining He, Hongyu Zheng, (2013).” Towards Perfect Anti-Reflection and Absorption for Nanodome-Array.Thin Film Silicon Solar Cell” Energy Procedia 33,150 - 156.
[21].C.E. Kennedy, (2002), “Review of Mid- to High-Temperature Solar Selective Absorber Materials” NREL/TP-520-31267.
[22].Jiang, B., M. Li, et al. (2013). "Morphology-controlled synthesis of silver nanoparticles on the silicon substrate by a facile silver mirror reaction." AIP Advances 3(3): 032119.
[23].Kazuya Tsu¡ino et al. (2005),"Boring Deep Gylindrisal Nanoholes in Silison Using Silver Nanopartisles as a Gatalyst", Adr. Mater, 17, No. 8.
[24].Lin, H.-J. and S.-H. Chen (2013). "Effect of the hydrogen concentration on the growth mechanism of sputtered hydrogenated silicon thin films." Optical Materials Express 3(9): 1215.
[25].Fontcuberta i Morral, A., P. Roca i Cabarrocas, et al. (2004). "Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements." Physical Review B 69(12).
[26].Ali, A. M. and H. Kobayashi (2014). "Hydrogen effect on nanostructural features of nanocrystalline silicon thin films deposited at 200°C by PECVD." Journal of Non-Crystalline Solids 385: p.p. 17-23.
[27].Kumar, S., P. N. Dixit, et al. (2008). "Effect of power on the growth of nanocrystalline silicon films." Journal of Physics: Condensed Matter 20(33): 335215.
[28].Ahnood, A., Y. Suzuki, et al. (2012). "Pulsed-radio frequency plasma enhanced chemical vapour deposition of low temperature silicon nitride for thin film transistors." Thin Solid Films 520(15): p.p. 4831-4834.
[29].Dewan, R., V. Jovanov, et al. (2014). "Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis." Sci Rep 4: 6029.
[30].Pehlivan, Ö., D. Menda, et al. (2014). "Structural and interfacial properties of large area n-a-Si:H/i-a-Si:H/p-c-Si heterojunction solar cells." Materials Science in Semiconductor Processing 22: p.p. 69-75.
[31].Ma, Ju., H. Bai, et al. (2016). "Size-controlled nc-Si:H/a-SiC:H quantum dots superlattice and its application to hydrogenated amorphous silicon solar cells." Solar Energy Materials and Solar Cells 157: p.p. 923-929.
[32].Janz, S., P. Löper, et al. (2013). "Silicon nanocrystals produced by solid phase crystallisation of superlattices for photovoltaic applications." Materials Science and Engineering: B 178(9): p.p. 542-550.
[33].Hartel, A. M., D. Hiller, et al. (2011). "Formation of size-controlled silicon nanocrystals in plasma enhanced chemical vapor deposition grown SiOxNy/SiO2 superlattices." Thin Solid Films 520(1): p.p. 121-125.
電子全文 電子全文(網際網路公開日期:20230820)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top