|
[1].Yoshikawa, K., H. Kawasaki, et al. (2017). "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%." Nature Energy, 2(5). [2].Kale, A. S., W. Nemeth, et al. (2018). "Effect of silicon oxide thickness on polysilicon based passivated contacts for high-efficiency crystalline silicon solar cells." Solar Energy Materials and Solar Cells, 185: p.p. 270-276. [3].Ren, N., J. Zhu, et al. (2018). "Controlling performance of a-Si:H solar cell with SnO2:F front electrode by introducing dual p-layers with p-a-SiO :H/p-nc-SiO :H nanostructure." Solar Energy 171: p.p. 907-913. [4].K. Zellama. et al. (1996). “Hydrogen-effusion-induced structural changes and defects in a-Si:H films:Dependence upon the film microstructure”, Phys. Rev. 53, 7 3804. [5].L.S. Sidhu, S. Zukotynski, (1999), “Monohydride clustering in the amorphous silicon matrix”, Journal of Non-Crystalline Solids 246, p.p. 65-72. [6].A. Shah , et al. (2000),” Intrinsic microcrystalline silicon (mc-Si:H) deposited by VHF-GD (very high frequency-glow discharge): a new material for photovoltaics and optoelectronics”, Materials Science and Engineering B 69-70, p.p. 219-226. [7].Jeong Chul Lee. et al. (2000), Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE15-22 Sept. Page(s):896 - 899 [8].Schropp, R.E.I., and M. Zeman, (1998), “Amorphous and Microcrystalline Silicon Solar Cells”, Kluwer Academic publishers, Boston, P.47. [9].Yeu-Long Jiang, Pei-Tzong Shih and Tai-Chao Kuo, (2008), Appl. Phys. Lett. 92(10), 101915. [10].Kai-Yi Hong, Yeu-Long Jiang, Tai-Chao Kuo, Tzu-Chin Hsu, (2008). “p/i(a-Si:Hx/a-Si:Hy superlattices)/n solar cells prepared by periodical switching rf plasma,” 2008 International Electron Devices and Materials Symposia, Taichung, Taiwan, R.O.C., Nov. 28-29, EO-674. [11].Chia-Wei Huang, Hsuan-Mei Weng, Yeu-Long Jiang, Herng-Yih Ueng, "Optimum growth of ZnSe film by molecular beam deposition," Vacuum 83, 313-318 . (SCI, EI) [12].R. K. Shaltens and J. G. Schreiber, “Comparison of conceptual designs for 25 kW advanced Stirling conversion systems for dish electric applications,” IEEE xplore, 899547. [13].J. Moreno et al. (2002), “Dish/Stirling hybrid-heat-pipe-receiver design and test results,” 2002 37th Intersociety Energy Conversion Engineering Conference, paper No. 20147. [14].D. Laing and M. Reusch, “hybrid sodium heat pipe receivers for Dish/Stirling systems,” IEEE xplore, 97520. [15].J. B. Kesseli and D. E. Lacy, “The cavity heat pipe Stirling receiver for space solar dynamics,” IEEE xplore, 899187. [16].R. Biswas, D. Zhou, B. Curtin, N. Chakravarty, V. Dalal, (2009),” SURFACE PLASMON ENHANCEMENT OF OPTICAL ABSORPTION OF THIN FILM A-SI:H SOLAR CELLS” IEEE, Page(s): 000557-000560. [17].Hao-Wei Han, Min-An Tsai, Ping-Chen Tseng, Yu-Lin Tsai, Liang-Hao Jin, Hsin-Chu Chen, Hsun-Wen Wang, Chien-Chung Lin, Peichen Yu, and Hao-Chung Kuo, (2011).” BROADBAND ABSORPTION ENHANCEMENT USING FRONT PRE-PATTERNED SUBSTRATE FOR THIN FILM AMORPHOUS SILICON SOLAR CELL”, IEEE, Page(s): 000866-000869. [18].H. Zoubos, L.E.Koutsokeras, D.F.Anagnostopoulos, E.Lidorikis, S.A.Kalogirou, A.R.Wildes, P.C.Kelires, P.Patsalas, (2013). “Broadband optical absorption of amorphous carbon/Ag nano composite films and its potential for solar harvesting applications”, Solar Energy Materials & Solar Cells117, p.p. 350-356. [19].R. Sidharthan, V.M. Murukeshan, (2013).” Improved light absorption in thin film solar cell using combination of gap modes and grating back reflector”, Thin Solid Films 548 , p.p. 581-584. [20].Lei Hong,*, Rusli, Xincai Wang, Hao Wang, Xiaoyan Xu, Lining He, Hongyu Zheng, (2013).” Towards Perfect Anti-Reflection and Absorption for Nanodome-Array.Thin Film Silicon Solar Cell” Energy Procedia 33,150 - 156. [21].C.E. Kennedy, (2002), “Review of Mid- to High-Temperature Solar Selective Absorber Materials” NREL/TP-520-31267. [22].Jiang, B., M. Li, et al. (2013). "Morphology-controlled synthesis of silver nanoparticles on the silicon substrate by a facile silver mirror reaction." AIP Advances 3(3): 032119. [23].Kazuya Tsu¡ino et al. (2005),"Boring Deep Gylindrisal Nanoholes in Silison Using Silver Nanopartisles as a Gatalyst", Adr. Mater, 17, No. 8. [24].Lin, H.-J. and S.-H. Chen (2013). "Effect of the hydrogen concentration on the growth mechanism of sputtered hydrogenated silicon thin films." Optical Materials Express 3(9): 1215. [25].Fontcuberta i Morral, A., P. Roca i Cabarrocas, et al. (2004). "Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements." Physical Review B 69(12). [26].Ali, A. M. and H. Kobayashi (2014). "Hydrogen effect on nanostructural features of nanocrystalline silicon thin films deposited at 200°C by PECVD." Journal of Non-Crystalline Solids 385: p.p. 17-23. [27].Kumar, S., P. N. Dixit, et al. (2008). "Effect of power on the growth of nanocrystalline silicon films." Journal of Physics: Condensed Matter 20(33): 335215. [28].Ahnood, A., Y. Suzuki, et al. (2012). "Pulsed-radio frequency plasma enhanced chemical vapour deposition of low temperature silicon nitride for thin film transistors." Thin Solid Films 520(15): p.p. 4831-4834. [29].Dewan, R., V. Jovanov, et al. (2014). "Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis." Sci Rep 4: 6029. [30].Pehlivan, Ö., D. Menda, et al. (2014). "Structural and interfacial properties of large area n-a-Si:H/i-a-Si:H/p-c-Si heterojunction solar cells." Materials Science in Semiconductor Processing 22: p.p. 69-75. [31].Ma, Ju., H. Bai, et al. (2016). "Size-controlled nc-Si:H/a-SiC:H quantum dots superlattice and its application to hydrogenated amorphous silicon solar cells." Solar Energy Materials and Solar Cells 157: p.p. 923-929. [32].Janz, S., P. Löper, et al. (2013). "Silicon nanocrystals produced by solid phase crystallisation of superlattices for photovoltaic applications." Materials Science and Engineering: B 178(9): p.p. 542-550. [33].Hartel, A. M., D. Hiller, et al. (2011). "Formation of size-controlled silicon nanocrystals in plasma enhanced chemical vapor deposition grown SiOxNy/SiO2 superlattices." Thin Solid Films 520(1): p.p. 121-125.
|