跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 11:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳軒僑
研究生(外文):Xuan-Qiao Wu
論文名稱:截面形狀與通道方向對矽奈米線電晶體的載子遷移率影響之模擬研究
論文名稱(外文):A Simulation Study of the Impact of Cross-sectional Shape and Channel Direction on Carrier Mobility of Silicon Nanowire Transistor
指導教授:張書通
口試委員:湯銘唐英瓚
口試日期:2020-06-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:48
中文關鍵詞:截面形狀奈米線電晶體應力鰭式場效電晶體遷移率
外文關鍵詞:Cross-sectional shapeNanowire transistorsStressFinFET transistorsMobility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用了維也納公司所研發的Global TCAD Solutions(GTS) TCAD模擬軟體,研究矽奈米線電晶體與鰭式場效電晶體載子遷移率。
本論文第一部份模擬了四種奈米線電晶體的通道截面形狀:圓形、三角形、正方形與菱形,其中我們又將菱形分成無偏轉和右旋60度兩種通道截面角度來觀察電子遷移率的變化,從模擬得知以矽為通道材料時,所有的截面形狀都顯示在模擬較大的通道截面面積時,在[100]通道方向會有較大的電子遷移率,而在模擬較小的通道截面面積時,則在[110]通道方向會有較大的電子遷移率。第二部份,我們在模擬鰭式場效電晶體時加入六種方向的應力,發現X軸和YZ軸施加應力對載子遷移率有較多的變化。
This master thesis uses Global TCAD Solutions (GTS) TCAD simulation software developed by a company from Vienna to study the carrier mobility of silicon nanowire transistors and fin field effect transistors (FinFET).
The first part of this master thesis simulates the channel cross-sectional shapes of four types of nanowire transistors, including circle, triangle, square, and diamond. The diamond shape is further divided into two channel cross-sectional angles of non-deflection and right-side 60 degrees to observe the change of electrons mobility. From the simulation when silicon is used as the channel material, all the cross-sectional shapes show that, when a larger channel cross-sectional area is simulated, there will be better electron mobility in the [100] channel direction, while the electron mobility will be better in the [110] channel direction when the cross-sectional area of the channel is small. In the second part, stress in six directions is added when simulating a FinFET. It is found that the X-axis and YZ-axis applied stress has more gain in the carrier mobility.
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 導論 1
1-1研究動機與背景 1
1-2文獻回顧 2
第二章 應變理論分析 5
2-1應力與應變介紹 5
2-2應變矽的材料性質與載子傳輸特性 7
第三章 能帶結構與遷移率計算理論 9
3-1 能帶結構 9
3-1.1 奈米線電晶體能帶模擬 9
3-1.2 k.p微擾法 14
3-1.3 3D狀態密度(Density of States) 15
3-1.4 2D狀態密度(Density of States) 16
3-1.5 1D狀態密度(Density of States) 17
3-2 Schrödinger equation 18
3-3 Poisson equation 19
3-4散射機制理論 20
3-4.1 Optical phonon scattering (ODP) 20
3-4.2 Acoustic phonon scattering (ADP) 21
3-4.3 Surface roughness scattering (SRS) 22
3-5 GTS-VSP操作說明及模組介紹 24
第四章 結果與討論 30
4-1 n-type矽奈米線電晶體電子遷移率計算 30
4-1.1截面尺寸對遷移率之影響 36
4-1.2相同通道截面面積之電子遷移率比較 37
4-1.3表面粗糙度散射參數對電子遷移率之影響 39
4-2 矽鰭式場效應電晶體載子遷移率計算 40
4-2.1 n-type矽鰭式場效應電晶體電子遷移率 41
4-2.2 p-type矽鰭式場效應電晶體電洞遷移率 43
第五章 結論與未來展望 45
5-1 結論 45
5-2 未來展望 46
參考文獻 47
[1] E. B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic, “Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering,” Journal of Applied Physics, vol. 104, pp. 063711, Sep.2008.
[2] N. Neophytou, and H. Kosina, “Strong anisotropy and diameter effects on the low-field mobility of silicon nanowires,” 2011 International Conference on Simulation of Semiconductor Processes and Devices, doi. 10.1109, Sep. 2011.
[3] Y. M. Niquet, C. Delerue, D. Rideau, and B. Videau , “Fully Atomistic Simulations of Phonon-Limited Mobility of Electrons and Holes in ⟨001⟩-, ⟨110⟩-, and ⟨111⟩ -Oriented Si Nanowires,” IEEE Transactions on Electron Devices, vol. 59, pp. 1480 - 1487, May. 2012.
[4] C. Buran , M. G. Pala , M. Bescond , M. Dubois , and M. Mouis , “Three- Dimensional Real-Space Simulation of Surface Roughness in Silicon Nanowire FETs,” IEEE Transactions on Electron Devices, vol. 56, pp. 2186 – 2192, Oct. 2009.
[5] A. K. Buin, A. Verma and M. P. Anantram, “Carrier-phonon interaction in small cross-sectional silicon nanowires,” Journal of Applied Physics, vol. 104, pp. 053716, Jun. 2008.
[6] R. Kotlyar, T. D.Linton, R. Rios, M. D. Giles, and S. M. Cea, “Does the low hole transport mass in 〈110〉 and 〈111〉 Si nanowires lead to mobility enhancements at high field and stress: A self-consistent tight-binding study,” Journal of Applied Physics, vol. 111, pp. 123718, Jun. 2012.
[7] S. Dhar, H. Kosina, V. Palankovski, E. Ungersboeck and S. Selberherr, “Electron mobility model for strained-Si devices,” IEEE Trans. Electron Devices, vol. 52, pp. 527-533, Apr. 2005
[8] S. Dhar, E. Ungersbock, H. Kosina, T. Grasser, and S. Selberherr, “Electron Mobility Model for 〈110〉 Stressed Silicon Including Strain-Dependent Mass,” IEEE Transactions on Nanotechnology, vol. 6, pp. 97 – 100, Jan. 2007
[9] J. Song, B. Yu, W. Xiong, and Y. Taur, “Gate-Length-Dependent Strain Effect in n- and p-Channel FinFETs,” IEEE Transactions on Electron Devices, vol. 56, pp. 533-536, Mar. 2009.
[10] K. Uchida, A. Kinoshita, and M. Saitoh, “Carrier transport in (110) nMOSFETs: Subband structures non-parabolicity mobility characteristics and uniaxial stress engineering,” 2006 International Electron Devices Meeting, doi. 10.1109, Dec. 2006.
[11] C. F. Lee, R. Y. He, K. T. Chen, S. Y. Cheng, and S. T. Chang, “Strain engineering for electron mobility enhancement of strained Ge NMOSFET with SiGe alloy source/drain stressors,” Microelectronic Engineering, vol. 138, no. 4, pp. 12-16, Jan. 2015.
[12] K. H. Cho, K. H. Yeo, Y. Y. Yeoh, S. D. Suk, M. Li, J. M. Lee, M. S. Kim, D. W. Kim, D. Park, B. H. Hong, Y. C. Jung, and S. W. Hwang, “Experimental evidence of ballistic transport in cylindrical gate-all-around twin silicon nanowire metal-oxide-semiconductor field-effect transistors,” Applied Physics Letters, vol. 92, pp. 052102, Jan.2008.
[13] N. Neophytou, Abhijeet Paul, Mark S. Lundstrom, and Gerhard Klimeck, “Bandstructure Effects in Silicon Nanowire Electron Transport,” IEEE Transactions on Electron Devices., vol. 55, no. 6, pp. 1286-1297, Jun.2008.
[14] N. Neophytou, and G. Klimeck, “Design space for low sensitivity to size variations in [110] PMOS nanowire devices: The implications of anisotropy in the quantization mass,” Nano Lett., vol. 9, no. 2, pp. 623-630, Jan.2009.
[15] S. Poli, and M. G. Pala, “Channel-Length Dependence of Low-Field Mobility in Silicon-Nanowire FETs,” IEEE Electron Device Letters, vol. 30, pp. 1212 - 1214, Nov. 2009.
[16] J. Wang, E. Polizzi, A. Gosh, S. Datta and M. Lundstrum, “Theoretical investigation of surface roughness scattering in silicon nanowire transistors,” Applied Physics Letters, vol. 87, no. 4, pp. 043101, Jul. 2005.
電子全文 電子全文(網際網路公開日期:20230827)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊