|
[1] E. B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic, “Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering,” Journal of Applied Physics, vol. 104, pp. 063711, Sep.2008. [2] N. Neophytou, and H. Kosina, “Strong anisotropy and diameter effects on the low-field mobility of silicon nanowires,” 2011 International Conference on Simulation of Semiconductor Processes and Devices, doi. 10.1109, Sep. 2011. [3] Y. M. Niquet, C. Delerue, D. Rideau, and B. Videau , “Fully Atomistic Simulations of Phonon-Limited Mobility of Electrons and Holes in ⟨001⟩-, ⟨110⟩-, and ⟨111⟩ -Oriented Si Nanowires,” IEEE Transactions on Electron Devices, vol. 59, pp. 1480 - 1487, May. 2012. [4] C. Buran , M. G. Pala , M. Bescond , M. Dubois , and M. Mouis , “Three- Dimensional Real-Space Simulation of Surface Roughness in Silicon Nanowire FETs,” IEEE Transactions on Electron Devices, vol. 56, pp. 2186 – 2192, Oct. 2009. [5] A. K. Buin, A. Verma and M. P. Anantram, “Carrier-phonon interaction in small cross-sectional silicon nanowires,” Journal of Applied Physics, vol. 104, pp. 053716, Jun. 2008. [6] R. Kotlyar, T. D.Linton, R. Rios, M. D. Giles, and S. M. Cea, “Does the low hole transport mass in 〈110〉 and 〈111〉 Si nanowires lead to mobility enhancements at high field and stress: A self-consistent tight-binding study,” Journal of Applied Physics, vol. 111, pp. 123718, Jun. 2012. [7] S. Dhar, H. Kosina, V. Palankovski, E. Ungersboeck and S. Selberherr, “Electron mobility model for strained-Si devices,” IEEE Trans. Electron Devices, vol. 52, pp. 527-533, Apr. 2005 [8] S. Dhar, E. Ungersbock, H. Kosina, T. Grasser, and S. Selberherr, “Electron Mobility Model for 〈110〉 Stressed Silicon Including Strain-Dependent Mass,” IEEE Transactions on Nanotechnology, vol. 6, pp. 97 – 100, Jan. 2007 [9] J. Song, B. Yu, W. Xiong, and Y. Taur, “Gate-Length-Dependent Strain Effect in n- and p-Channel FinFETs,” IEEE Transactions on Electron Devices, vol. 56, pp. 533-536, Mar. 2009. [10] K. Uchida, A. Kinoshita, and M. Saitoh, “Carrier transport in (110) nMOSFETs: Subband structures non-parabolicity mobility characteristics and uniaxial stress engineering,” 2006 International Electron Devices Meeting, doi. 10.1109, Dec. 2006. [11] C. F. Lee, R. Y. He, K. T. Chen, S. Y. Cheng, and S. T. Chang, “Strain engineering for electron mobility enhancement of strained Ge NMOSFET with SiGe alloy source/drain stressors,” Microelectronic Engineering, vol. 138, no. 4, pp. 12-16, Jan. 2015. [12] K. H. Cho, K. H. Yeo, Y. Y. Yeoh, S. D. Suk, M. Li, J. M. Lee, M. S. Kim, D. W. Kim, D. Park, B. H. Hong, Y. C. Jung, and S. W. Hwang, “Experimental evidence of ballistic transport in cylindrical gate-all-around twin silicon nanowire metal-oxide-semiconductor field-effect transistors,” Applied Physics Letters, vol. 92, pp. 052102, Jan.2008. [13] N. Neophytou, Abhijeet Paul, Mark S. Lundstrom, and Gerhard Klimeck, “Bandstructure Effects in Silicon Nanowire Electron Transport,” IEEE Transactions on Electron Devices., vol. 55, no. 6, pp. 1286-1297, Jun.2008. [14] N. Neophytou, and G. Klimeck, “Design space for low sensitivity to size variations in [110] PMOS nanowire devices: The implications of anisotropy in the quantization mass,” Nano Lett., vol. 9, no. 2, pp. 623-630, Jan.2009. [15] S. Poli, and M. G. Pala, “Channel-Length Dependence of Low-Field Mobility in Silicon-Nanowire FETs,” IEEE Electron Device Letters, vol. 30, pp. 1212 - 1214, Nov. 2009. [16] J. Wang, E. Polizzi, A. Gosh, S. Datta and M. Lundstrum, “Theoretical investigation of surface roughness scattering in silicon nanowire transistors,” Applied Physics Letters, vol. 87, no. 4, pp. 043101, Jul. 2005.
|