跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 13:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林文彥
研究生(外文):Wen-Yen Lin
論文名稱:結合數位影像關係法與聚焦離子束環形鑽孔法量測HiPIMs TiN 與 Ti 冷噴薄膜之TiN/Ti 雙層膜之殘留應力
論文名稱(外文):FIB-DIC method for the Residual stress measurement of TiN, TiN/Ti duplex coating and Ti using HiPIMs and cold spray coating method
指導教授:林明澤林明澤引用關係
指導教授(外文):Ming-Tzer Lin
口試委員:敖仲寧吳威德陳元方
口試委員(外文):Jong-Ning AohWei-Te WuYuan-Fang Chen
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:72
中文關鍵詞:冷噴塗氮化鈦聚焦離子束結合數位影像關係法(FIB-DIC)殘留應力
外文關鍵詞:Cold sprayFocused ion beam (FIB)Digital image correlation (DIC)Residual stressTiN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文介紹利用聚焦離子束(Focused Ion Beam system,FIB)環形鑽孔(Ring-core)結合數位影像關係法(Digital Image Correlation)來量測冷噴塗鈦以及氮化鈦之殘留應力,研究首先於鈦基板使用冷噴製成製作三種鈦厚膜,分別為兩層堆積、八層堆積以及十四層堆積,總厚度皆為0.5公分,而經由研磨拋光後以高功率脈衝磁控濺鍍(HiPIMS)於三種冷噴鈦塗層上分別沉積兩種氮化鈦薄膜(600nm),其差異為其中一組會在濺鍍氮化鈦薄膜前濺鍍一層鈦附著層(50nm)。而後將鈦以及氮化鈦試片分別透過奈米壓痕測量楊氏係數、AFM-原子力顯微鏡量測表面粗糙度以及聚焦離子束環形鑽孔法結合數位影像關係法(FIB-DIC)量測殘留應力,利用聚焦離子束於 Ti厚膜以及 TiN 薄膜表面中心位置使用鑽孔法銑削不同深度的環芯圓環並拍攝掃描電子顯微鏡(Scanning Electron Microscope,SEM)影像,使用數位影像關係法計算全場域位移,量測到奈米等級之位移量,後將先前奈米壓痕測量之楊氏係數帶入公式計算出薄膜之殘留應力,以及殘留應力與銑削深度關係,用於量測薄膜殘留應力可行性。
其殘留應力結果顯示冷噴鈦厚膜於鑽孔深度0nm至1500nm呈現上升趨勢,而在1500nm至2000nm逐漸收斂,其殘留應力大約為77.9 GPa,而量測HiPIMS TiN(有附著層)結果顯示之三種TiN試片於鑽孔深度0nm至500nm皆呈現上升趨勢,而在500nm至1000nm間收斂,其殘留應力大約為4.2 GPa,其結果顯示三種TiN薄膜之殘留應力差距不大,差距大約在4%,而於無附著層之TiN量測方面,殘留應力落在400 MPa左右,並有薄膜脫落情況發生。
In this study, the combination of focused ion beam(FIB) and digital image correlation was used to measure the residual stress of cold spray titanium coating and HiPIMS TiN. The cold spray titanium coating (5mm) was deposited on the titanium substrate, which prepared in three different numbers of layers (i.e., 2, 8, and 14, respectively). The titanium nitride (TiN) and TiN plus Ti adhesion layer (TiN/Ti) (50 nm) thin film with a thickness of approximately 600 nm was deposited on three titanium cold-sprayed substrates by using a high-power impulse magnetron sputtering (HiPIMS) process separately. Follow by next, the nano-indentation test were performed on the Ti and TiN/Ti coating to obtain the Young’s modulus, which will be used to calculate the residual stress, and AFM was performed to get the roughness, and the FIB-DIC method was applied to the cold spray Ti and TiN/Ti samples to obtain the residual stress. The focused ion beam (FIB) ring-core drilling method was conducted with various depth steps, and the corresponding images were obtained with a scanning electron microscope (SEM). The digital image correlation (DIC) method was used to measure the displacement. The residual stress was finally obtained by using the relationship between the displacement and the strain after calibration and then differentiating the displacement of each pixel in the image. The residual stress of the cold spray titanium measured by FIB-DIC is about 77.9 MPa, and the residual stress of three TiN/Ti samples measured by FIB-DIC is about 4.2 GPa, which shows no significant difference. About the TiN sample without the adhesion layer, the residual stress is about 400 MPa, and some parts of the film peeled off from the substrate.
中文摘要 i
Abstract ii
Index iii
List of table v
List of Figure vi
Chapter 1 Introduction 1
1.1 Background Information 1
1.2 Research Motivation 3
1.3 Thesis structure 4
Chapter 2. Literature and theory review 5
2.1 Introduction to cold spray process 5
2.2 Introduction to high power impulse magnetron sputtering 9
2.3 Introduction to titanium and titanium nitride (TiN) 12
2.4 Introduction to nanoindentation 13
2.5 Introduction to residual stress of films 16
2.6 Introduction to adhesion between films 16
2.7 Introduction to hole drilling and ring coring 17
2.8 Introduction to digital image correlation (DIC) 20
Chapter 3. Theory Introduction 21
3.1 Displacement and strain calculation 21
3.2 Numeric analysis 23
3.3 Digital image correlation criteria 25
3.4 Residual stress calculation 26
3.5 Hole-drilling method 31
3.6 Ring-core method 32
3.7 Strain calculation 32
3.8 Drilling procedure 33
3.9 DIC software 34
Chapter 4 Experimental Procedure 35
4.1 Cold-spray specimen preparation 35
4.2 High Power Impulse Magnetron Sputtering deposition 41
4.3 Focused ion beam-digital image correlation (FIB-DIC) 45
4.4 Process flow diagram and list 47
Chapter 5 Results and Discussion 48
5.1 Roughness measurement 48
5.2 Nano-indentation test 50
5.3 SEM and FIB process 52
5.4 DIC displacement and strain measurement 57
5.5 Residual stress calculation 62
Chapter 6 Conclusions and Future Directions 65
Reference 67
1.D. Goldbaum et al., Tribological behavior of TiN and Ti (Si,C)N coatings on cold sprayed Ti substrates. Surface and Coatings Technology 291, 264-275 (2016).
2.Y. Hu, M. Madhava, F. Renteria. (Google Patents, 2005).
3.A. Sova, S. Grigoriev, A. Okunkova, I. Smurov, Potential of cold gas dynamic spray as additive manufacturing technology. The International Journal of Advanced Manufacturing Technology 69, 2269-2278 (2013).
4.V. K. Champagne, The cold spray materials deposition process. (Elsevier, 2007).
5.J. Pattison, S. Celotto, R. Morgan, M. Bray, W. O’neill, Cold gas dynamic manufacturing: A non-thermal approach to freeform fabrication. International Journal of Machine Tools and Manufacture 47, 627-634 (2007).
6.F. Renteria, M. N. Madhava, Y. Hu, D. Raybould, H.-D. Trinh-Le. (Google Patents, 2008).
7.A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, V. M. Fomin, Cold spray technology. (Elsevier, 2006).
8.W. Wong, E. Irissou, A. N. Ryabinin, J.-G. Legoux, S. Yue, Influence of helium and nitrogen gases on the properties of cold gas dynamic sprayed pure titanium coatings. Journal of Thermal Spray Technology 20, 213-226 (2011).
9.V. Kouznetsov, K. Macak, J. M. Schneider, U. Helmersson, I. Petrov, A novel pulsed magnetron sputter technique utilizing very high target power densities. Surface and coatings technology 122, 290-293 (1999).
10.A. P. Ehiasarian et al., Influence of high power densities on the composition of pulsed magnetron plasmas. Vacuum 65, 147-154 (2002).
11.U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, J. T. Gudmundsson, Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin solid films 513, 1-24 (2006).
12.J. Vlček, A. Pajdarová, J. Musil, Pulsed dc magnetron discharges and their utilization in plasma surface engineering. Contributions to Plasma Physics 44, 426-436 (2004).
13.T. Kubart, M. Čada, D. Lundin, Z. Hubička, Investigation of ionized metal flux fraction in HiPIMS discharges with Ti and Ni targets. Surface and Coatings Technology 238, 152-157 (2014).
14.J. Čapek, M. Hála, O. Zabeida, J. Klemberg-Sapieha, L. Martinu, Steady state discharge optimization in high-power impulse magnetron sputtering through the control of the magnetic field. Journal of Applied Physics 111, 023301 (2012).
15.M. Hála, J. Čapek, O. Zabeida, J. E. Klemberg-Sapieha, L. Martinu, Pulse management in high power pulsed magnetron sputtering of niobium. Surface and Coatings Technology 206, 4186-4193 (2012).
16.A. Anders, J. Čapek, M. Hála, L. Martinu, The ‘recycling trap’: a generalized explanation of discharge runaway in high-power impulse magnetron sputtering. Journal of physics D: Applied physics 45, 012003 (2011).
17.A. P. Ehiasarian, P. E. Hovsepian, L. Hultman, U. Helmersson, Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique. Thin solid films 457, 270-277 (2004).
18.L. Hultman, J. E. Sundgren, J. Greene, D. Bergstrom, I. Petrov, High‐flux low‐energy (≂ 20 eV) N+ 2 ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation. Journal of Applied Physics 78, 5395-5403 (1995).
19.D. Lundin, M. Stahl, H. Kersten, U. Helmersson, Energy flux measurements in high power impulse magnetron sputtering. Journal of Physics D: Applied Physics 42, 185202 (2009).
20.T. Y.-F. Chen, Y.-C. Chou, Z.-Y. Wang, W.-Y. Lin, M.-T. Lin, Using Digital Image Correlation on SEM Images of Strain Field after Ion Beam Milling for the Residual Stress Measurement of Thin Films. Materials 13, 1291 (2020).
21.Y.-C. Chou, W.-Y. Lin, W.-C. Pan, M.-T. Lin, T. Y.-F. Chen, in The Abstracts of ATEM: International Conference on Advanced Technology in Experimental Mechanics: Asian Conference on Experimental Mechanics 2019. (The Japan Society of Mechanical Engineers, 2019), pp. 1008B1145.
22.B. Tian et al., Microstructure and tribological properties of W-implanted PVD TiN coatings on 316L stainless steel. Vacuum 99, 68-75 (2014).
23.B. Deng, Y. Tao, Z. Hu, The microstructure, mechanical and tribological properties of TiN coatings after Nb and C ion implantation. Applied surface science 284, 405-411 (2013).
24.X. Wang, P. Y. Kwon, D. Schrock, Friction coefficient and sliding wear of AlTiN coating under various lubrication conditions. Wear 304, 67-76 (2013).
25.K. V. Chauhan, S. K. Rawal, A review paper on tribological and mechanical properties of ternary nitride based coatings. Procedia Technology 14, 430-437 (2014).
26.S. H. Thurston, Method of Impacting One Metal Upon Another,. (1900).
27.E. Irissou, J.-G. Legoux, A. N. Ryabinin, B. Jodoin, C. Moreau, Review on cold spray process and technology: part I—intellectual property. Journal of Thermal Spray Technology 17, 495-516 (2008).
28.S. H. Thursto, Process of Coating One Metal with Another Metal. (1901).
29.C. F. Rocheville, Device for Treating the Surface of a Workpiece. (1958).
30.A. P. Alkhimov, V. F. Kosarev, A. N. Papyrin, Dokl. Akad. Nauk SSSR. 315, 1062-1065 (1990).
31.A. P. Alkhimov, V. F. Kosarev, N. I. Nesterovich, A.N.Papyrin, Method for Deposition of Coatings. (1986(1991)).
32.A. P. Alkhimov, N. I. Nesterovich, A. N. Papyrin, V. F. Kosarev, M. M. Shushpanov, Device for Applying Coatings. (1986(1991)).
33.R. Wei, E. Langa, C. Rincon, J. H. Arps, Deposition of thick nitrides and carbonitrides for sand erosion protection. Surface and Coatings Technology 201, 4453-4459 (2006).
34.K. Sarakinos, J. Alami, S. Konstantinidis, High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surface and Coatings Technology 204, 1661-1684 (2010).
35.A.-M. Valente-Feliciano, "HIPIMS: A new generation of film deposition techniques for SRF applications," (Thomas Jefferson National Accelerator Facility, Newport News, VA (United States), 2013).
36.Q. Luo, S. Yang, K. Cooke, Hybrid HIPIMS and DC magnetron sputtering deposition of TiN coatings: Deposition rate, structure and tribological properties. Surface and Coatings Technology 236, 13-21 (2013).
37.W.-J. Chou, G.-P. Yu, J.-H. Huang, Deposition of TiN thin films on Si (100) by HCD ion plating. Surface and Coatings Technology 140, 206-214 (2001).
38.R. R. Boyer, An overview on the use of titanium in the aerospace industry. Materials Science and Engineering: A 213, 103-114 (1996).
39.O. E. Pohler, Unalloyed titanium for implants in bone surgery. Injury 31, D7-D13 (2000).
40.M. Niinomi, Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A 243, 231-236 (1998).
41.M. J. Donachie, Titanium: a technical guide. (ASM international, 2000).
42.G. Lütjering, J. C. Williams, Titanium. (Springer Science & Business Media, 2007).
43.J. Karthikeyan, Cold spray technology: International status and USA efforts. Report from ASB Industries Inc., Barbeton, OH 44203, 1-14 (2004).
44.S. H. Zahiri, C. I. Antonio, M. Jahedi, Elimination of porosity in directly fabricated titanium via cold gas dynamic spraying. Journal of Materials Processing Technology 209, 922-929 (2009).
45.K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, S. Varjus, A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces. Wear 254, 278-291 (2003).
46.F. Vaz et al., Structural, optical and mechanical properties of coloured TiNxOy thin films. Thin Solid Films 447, 449-454 (2004).
47.F. Espinoza-Beltrán, O. Che-Soberanis, L. Garcıa-González, J. Morales-Hernández, Effect of the substrate bias potential on crystalline grain size, intrinsic stress and hardness of vacuum arc evaporated TiN/c-Si coatings. Thin Solid Films 437, 170-175 (2003).
48.S. PalDey, S. Deevi, Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review. Materials Science and Engineering: A 342, 58-79 (2003).
49.A. C. Fischer-Cripps, D. Nicholson, Nanoindentation. Mechanical engineering series. Appl. Mech. Rev. 57, B12-B12 (2004).
50.W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research 7, 1564-1583 (1992).
51.M. Doerner, W. Nix, A method for interpreting the data from depth-sensing indentation. Journal of Materials research 1, 601-609 (1986).
52.C. T. McKee, J. A. Last, P. Russell, C. J. Murphy, Indentation versus tensile measurements of Young''s modulus for soft biological tissues. Tissue Engineering Part B: Reviews 17, 155-164 (2011).
53.M. R. VanLandingham, Review of instrumented indentation. Journal of Research of the National Institute of Standards and Technology 108, 249 (2003).
54.I. N. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International journal of engineering science 3, 47-57 (1965).
55.G. Gore, X. On the properties of electro-deposited antimony. Philosophical Transactions of the Royal Society of London, 185-197 (1858).
56.G. G. Stoney, The tension of metallic films deposited by electrolysis. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 82, 172-175 (1909).
57.S. Huang, X. Zhang, Extension of the Stoney formula for film–substrate systems with gradient stress for MEMS applications. Journal of Micromechanics and Microengineering 16, 382 (2006).
58.R. Anzalone, A. Alberti, F. La Via, Evaluation of 3C-SiC/Si residual stress and curvatures along different wafer direction. Materials Letters 118, 130-133 (2014).
59.S. Wu, Polymer interface and adhesion. (1982).
60.M. Todeschini, A. Bastos da Silva Fanta, F. Jensen, J. B. Wagner, A. Han, Influence of Ti and Cr adhesion layers on ultrathin Au films. ACS applied materials & interfaces 9, 37374-37385 (2017).
61.汪宙緯, 謝昀阳, 鍾震桂, 鈦氮化物薄膜之微結構與特性研究. Journal of Chinese Corrosion Engineering 30, 24-27 (2016).
62.J. Mathar, Determination of Initial Stresses by Measuring the Deformation Around Drilled holes, Arch Eisenhüttenwesen, 6, 1934. et Trans. ASME 56, 249.
63.A. Standard, E837-08 Standard Test Method for Determining Residual Stresses by the Hole-drilling Strain-gage Method. ASMT international, West Conshohocken, PA, (2008).
64.P. Grant, J. Lord, P. Whitehead, The measurement of residual stresses by the incremental hole drilling technique. (2006).
65.G. Schajer, G. Roy, M. Flaman, J. Lu, Hole-drilling and ring core methods. Handbook of measurement of residual stresses, 5-34 (1996).
66.G. Vishay. (Measurements Group Inc., 1993).
67.R. Oettel, The determination of uncertainties in residual stress measurement (using the hole drilling technique). Code of practice 15, (2000).
68.W. Soete, R. Vancrombrugge, An industrial method for the determination of residual stresses. Proc. SESA 8, 17-28 (1950).
69.R. Kelsey, Measuring non-uniform residual stresses by the hole drilling method. Proc. SESA 14, 181-194 (1956).
70.R. H. Merrill, Three-component borehole deformation gage for determining the stress in rock. (US Department of the Interior, Bureau of Mines, 1967), vol. 7015.
71.R. Leggatt, D. Smith, S. Smith, F. Faure, Development and experimental validation of the deep hole method for residual stress measurement. The Journal of Strain Analysis for Engineering Design 31, 177-186 (1996).
72.E. Procter, E. Beaney, The trepan or ring core method, centre-hole method, Sach''s method, blind hole methods, deep hole technique. Pergamon Press, Advances in Surface Treatments. Technology--Applications--Effects. 4, 165-198 (1987).
73.N. Rendler, I. Vigness, Hole-drilling strain-gage method of measuring residual stresses. Experimental mechanics 6, 577-586 (1966).
74.M. Bijak-Zochowski, in (Verein Deutscher Ingenieure, Internationale Konferenz ueber experimentelle Spannungsanalyse, 6 th, Munich, West Germany, Sept. 18-22, 1978.) VDI-Berichte. (1978), pp. 469-476.
75.G. Schajer, Application of finite element calculations to residual stress measurements. (1981).
76.S. Keil, Experimental determination of residual stresses with the ring-core method and an on-line measuring system. Experimental Techniques 16, 17-24 (1992).
77.H. Wern, A new approach to triaxial residual stress evaluation by the hole drilling method. Strain 33, 121-126 (1997).
78.R. G. Reid, University of the Witwatersrand, (2009).
79.R. Reid, R. Paskaramoorthy, A novel method to measure residual stresses in unidirectional GFRP. Composite structures 88, 388-393 (2009).
80.W. Ren, K. Li, Application of miniature ring-core and interferometric strain/slope rosette to determine residual stress distribution with depth—part II: experiments. (2007).
81.M. Sebastiani, C. Eberl, E. Bemporad, G. Pharr, Depth-Resolved Residual Stress Analysis of Thin Coatings by a New FIB-DIC Method. Materials Science and Engineering: A 528, 7901-7908 (2011).
82.T. Chu, W. Ranson, M. A. Sutton, Applications of digital-image-correlation techniques to experimental mechanics. Experimental mechanics 25, 232-244 (1985).
83.M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, S. R. McNeill, Determination of displacements using an improved digital correlation method. Image and Vision Computing 1, 133-139 (1983).
84.S. R. McNeill, W. H. Peters, M. A. Sutton, Estimation of stress intensity factor by digital image correlation. Engineering Fracture Mechanics 28, 101-112 (1987).
85.W. Tong, An Evaluation of Digital Image Correlation Criteria for Strain Mapping Applications. Strain 41, 167-175 (2005).
86.B. Pan, K. Qian, H. Xie, A. Asundi, Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology 20, 062001 (2009).
87.B. Pan, Z. Wang, Z. Lu, Genuine full-field deformation measurement of an object with complex shape using reliability-guided digital image correlation. Opt. Express 18, 1011-1023 (2010).
88.R. Hallman. (2011).
89.T. Suhonen, T. Varis, S. Dosta, M. Torrell, J. Guilemany, Residual stress development in cold sprayed Al, Cu and Ti coatings. Acta materialia 61, 6329-6337 (2013).
電子全文 電子全文(全文開放日期20230812,本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊