跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡正倫
研究生(外文):Jheng-Lun Jian
論文名稱:光輔助掃描電位顯微術於矽基載子濃度之研究
論文名稱(外文):A study of photo-assisted Kelvin probe force microscopy on carrier concentration in silicon
指導教授:張茂男
指導教授(外文):Mao-Nan Chang
口試委員:何孟書蘇俊榮
口試日期:2020-01-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:奈米科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:42
中文關鍵詞:掃描電位顯微術表面電位變化差值影像分析
外文關鍵詞:Kelvin probe force microscopysurface potential differencedifference image analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
掃描探針顯微術是一種可以獲得掃描區域上的表面形貌,並可在不同模式中,提供對應表面形貌之物理資訊的奈米檢測技術。在半導體的檢測中,為了防止光電壓效應使量測失真,我們通常會避免待測樣品照射到光線。但掃描電位顯微術可以結合不同強度的光源,藉由接觸電位差之改變得知半導體樣品的電性。本研究中,我使用探針懸臂遮擋系統雷射強度,在矽基樣品上製造固定的光強度差,再利用差值分析得到不同佈植劑量樣品的表面電位變化,並使用霍爾量測與四點探針測得的載子濃度作為表面電位差的校正參考,我發現在半定量法的適用範圍內,以表面電位變化推算的載子濃度與四點探針量測結果相近,代表光輔助掃描電位顯微鏡可以有條件的量測載子濃度。在二維載子濃度分析上,利用掃描電位顯微術的差值影像,我發現光輔助KPFM可以辨別載子濃度梯度,且可辨別構造簡單且區域明顯之P-N接面,有潛力成為分析矽基載子濃度與P-N接面的新方法。
Scanning probe microscopy (SPM) is a nano-metrologic technique, which obtains the surface topography of a scanning area and provides the physical information corresponding to the surface topography in different operation modes. For semiconductor characterizations, it is a general requirement to avoid the specimen under photo-illumination in order to prevent the distortion induced by photovoltage effects. However, Kelvin probe force microscopy (KPFM) may combine the light with various illumination intensity to obtain the electrical properties of semiconducting samples by the change in the contact potential difference (CPD). In this thesis, I used the probe cantilever to partially shade the AFM laser for producing a fixed photo-intensity difference on silicon-based specimens. After that, I analyzed the CPD difference to obtain the change in the surface potential of the sample with various implantation dose. The carrier concentration obtained by a four-point probe method and the Hall measurement may be a reference of the surface potential variation. It was found that the deduced carrier concentration carried out by the CPD difference is close to the carrier concentration obtained by the four-point probe method if the semi-quantitative approach works, implying that the photo-assisted KPFM may conditionally detect the carrier concentration. For the analysis of two-dimensional carrier concentration, using the differential image of KPFM, it was revealed that photo-assisted KPFM can identify the carrier concentration gradients as well as P-N junctions for the sample with a simple structure and an obvious interface. Photo-assisted KPFM is potential for a new approach to analyzing carrier concentrations and P-N junctions in silicon-based materials.
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 前言 1
1.1 背景 1
1.2 研究動機 6
第二章 基本原理 8
2.1 光電壓效應 8
2.2 掃描電位顯微術 11
第三章 實驗 14
3.1 光輔助掃描電位顯微術之系統架構 14
3.2 實驗方法 15
3.3 掃描電位差值影像分析 15
3.4 樣品製備 16
3.4.1 平面樣品 16
3.4.2 橫截面樣品 17
第四章 結果與討論 19
4.1 表面電位變化對CPD值影響 19
4.2 半定量分析 22
4.3 連續性濃度分布分析 29
4.4 掃描結果分析 38
第五章 結論與建議 40
參考文獻 41
[1]G. Binnig and H. Rohrer, Physical Review Letters, 49/1, 57 (1992).
[2]G. Binnig, Physica Scripta, 53, T19A (1987).
[3]W. A. Zisman, Review of Scientific Instruments, 3, 367 (1932).
[4]J. M. R. Weaver and D. W. Abraham, Journal of Vacuum Science & Technology B, 9, 1559 (1991).
[5]M. Nonnenmacher, M. P. O’ Boyle, and H. K. Wickramasinghe, Applied Physics Letters, 58, 2921 (1991).
[6]P. Schmutz and Frankel, Journal of the electrochemical society, 2285, 145 (1998).
[7]S. Vinaji, A. Lochthofen, and W. Mertin, Nanotechnology, 20, 385702, (2009).
[8]A. K. Henning, T. Hochwitz, and J. Slinkman, Journal of applied physics, 1888, 77 (1995).
[9]M. Yasutake, D. Aoki, and M. Fujihira, Thin solid films, 279, 273 (1996).
[10]M. N. Chang, C. Y. Chen, W. W. Wan, and J. H. Liang, Applied Physics Letters, 82, 3955 (2003).
[11]M. N. Chang, C. Y. Chen, M. J. Yang, and C. H. Chien, Applied Physics Letters, 89, 133109 (2006).
[12]M. N. Chang, C. Y. Chen, W. J. Huang, and T. C. Cheng, Applied Physics Letters, 87, 023102 (2005).
[13]X. X. Sun, X. Q. Wang, P. Wang, and B. Sheng, Optical Materials Express, 7, 904 (2017).
[14]T. Ivaov, V. Donchev, K. Germanova, and K. Kirilov, IOP Publishing Limited, 11 (2009).
[15]S. Sadewassera and M. C. L. Steiner, Journal of Vacuum Science & Technology B, 28, C4D29 (2010).
[16]A. Doukkali, S. Ledain, C. Guasch, and J. Bonnet, Applied Surface Science, 235, 507 (2004).
[17]H. S. Yu, "Optoelectronics: Principles and Applications", Taipei: Central Publishing Limited, 101 (1987).
[18]W. Melitz, J. Shen, A. C. Kummel, and S. Lee, SurfaceScienceReports, 66, 1 (2011).
[19]D. A. Neamen, "Semiconductor Physics and Devices:Basic Principles", 4e, New York:McGraw-Hill Higher Education, 192 (2013).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top