跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 12:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳盈君
研究生(外文):CHEN,YING-CHUN
論文名稱:高齡者情緒變化對臉部表情、瞳孔、皮膚電導反應和心率變異之影響
論文名稱(外文):Effects of Emotional changes in elderly people on Facial Expression, Pupil Variation, Galvanic Skin Responses and Heart Rate Variability
指導教授:邱敏綺邱敏綺引用關係
指導教授(外文):CHIU,MIN-CHI
口試委員:吳欣潔黃喬次
口試委員(外文):WU, HSIN-CHIENHUANG, CHIAO-TZU
口試日期:2020-07-21
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:76
中文關鍵詞:高齡者情緒辨識臉部表情辨識瞳孔變化皮膚電導反應
外文關鍵詞:ElderlyEmotional expressionFacial expression recognitionPupil varianceGalvanic skin responses
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今社會的老年人口比率不斷上升,2026年台灣即將邁入「超高齡社會」,而衰老影響人們生理與心理的變化,也會影響高齡者的情感功能。本研究目的在於透過高齡者情緒誘發收集主觀情緒感受,透過連續紀錄臉部表情變化、瞳孔變化、皮膚電導反應與心率變異分析,透過完整心理感受評量與生理訊號變化了解高齡者的情緒變化的特徵。
本研究招募30名自願健康的高齡受試者,男女各半,年齡分布範圍在60-75歲。編輯六段免費網路平台影片,誘發六種情緒(開心、悲傷、憤怒、驚奇、恐懼、厭惡),透過主觀自我情緒評估量表(self-assessment manikin, SAM)與貼圖紀錄主觀情緒感受,並使用臉部表情系統(Noldus facereader 7)進行臉部表情辨識,眼動追蹤系統(Tobii Pro X3-120)進行瞳孔反應紀錄,生理回饋設備(Pro Comp Infiniti)偵測皮膚電導反應和心率變異分析,探討高齡者六種情緒(開心、悲傷、憤怒、驚奇、恐懼、厭惡)反應時,心理感受與生理量測之關係,性別差異對情緒反應的影響亦被討論。收集資料以Excel進行資料的整理,並透過統計軟體SPSS 22進行分析,使用單因子變異數分析和卡方檢定探討情緒影片對各項之影響。研究發現在瞳孔最大值、瞳孔變化量、瞳孔缺失比率、皮膚電導反應和心率於六類情緒皆有差異(p<.05),在性別則於瞳孔最大值、皮膚電導反應和心率有顯著差異(p<.05)。
在臉部表情中於恐懼的情緒反應中會出現最高的辨識率、厭惡則最低,皮膚電導反應中於恐懼、開心情緒反應中出現最明顯的皮膚電導喚醒比例,瞳孔反應則在恐懼中出現瞳孔的最大值與最大變化量,而在驚奇情緒反應中會出現最高的心率。透過量化的情緒變化數據結果能做為未來高齡者情緒變化偵測之參考,若融入遠端居家照護相關技術中,則可更即時辨別高齡者情緒並給予回饋,使人機互動更人性化。

The percentage of the elderly population in society today is rising. Taiwan is about to enter a "super-aged society" in 2026, and aging affects the physiological and psychological functions of the elderly, as well as affecting the emotional functions of the elderly.
The purpose of this study is to collect current subjective emotional feelings through the emotional induction of elderly people, continuously record facial expression recognition, pupil variation, galvanic skin responses, and heart rate variability in elderly people, to understand the characteristics of emotional changes in elderly people using changes in physiological signals and psychological evaluation.
This study recruited 30 volunteers, half male and half female, with an age distribution ranging from 60 to 75 years of age. Edit six free internet platform videos to induce six emotions: happy, sad, anger, surprise, fear, disgust, record subjective emotional feelings through the self-assessment manikin (SAM) and E-sticker, and use facial expression system ( Noldus FaceReader 7) for facial expression recognition, eye tracking system ( Tobii Pro X3-120) for pupil variation, and physiological feedback device (Pro Comp Infiniti) to detect skin conductance response and heart rate variability. Discussing the six emotional responses to psychological and physiological measurements for the elderly, as well as the effects of gender differences on emotional responses were also discussed. Collect the data and organize it in Excel, and analyze it in SPSS 22, using a One-way ANOVA and Chi-Square Test to explore the impact of emotional videos on each item's emotional state.
The study found that there were differences in pupil diameter, the pupil variance, the missed pupil ratio, the skin conductance response, and the heart rate for the six types of emotions (p<.05). There is a significant difference in gender between the pupil diameter, heart rate, and skin conductance response (p<.05). In facial expressions, the highest recognition rate is in fear, and disgust is the lowest. The highest proportion of arousal in a skin conductance reaction is in the fear emotional response. The pupil diameter and the pupil variance are the largest in the fear group. The highest heart rate appears in the emotional response of surprise.
The quantified emotional change data can be used as a reference for the detection of emotional changes in the elderly in the future. If it is integrated into the technology of remote home care, it can identify the emotions of the elderly and give feedback in real time, making the human-computer interaction more humanized.

中文摘要 i
英文摘要 iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 x
第一章緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究架構與流程 4
1.4 研究限制 4
第二章文獻回顧 6
2.1 情緒的定義與發展 7
2.2 情緒心理評量 8
2.3 情緒與臉部表情之關係 9
2.4 情緒生理量測 10
2.4.1 情緒反應與瞳孔反應之關係 11
2.4.2 情緒反應與皮膚電導反應(galvanic skin responses)之關係 11
2.4.3 情緒反應與心率變異分析之關係 12
2.5 高齡者情緒反應 15
2.6 小結 17
第三章研究方法 18
3.1 問題定義 18
3.2 實驗設計 18
3.2.1 受試者 18
3.2.2 自變項 18
3.2.3 依變項 18
3.2.4 實驗設備 20
3.3 實驗流程 27
第四章研究成果 28
4.1 情緒與心理評量 28
4.1.1 情緒與自我情緒評估量表(self-assessment manikin, SAM) 28
4.1.2 情緒與情緒貼圖選用 30
4.2 情緒與臉部表情反應 37
4.3 情緒與生理量測 38
4.3.1 情緒與瞳孔反應 38
4.3.2 情緒與皮膚電導反應 43
4.3.3 情緒與心率變異分析 44
4.4 性別與心理量測 46
4.4.1 性別與自我情緒評估量表(self-assessment manikin, SAM) 46
4.4.2 性別與情緒貼圖選用 47
4.5 性別與臉部表情反應 51
4.6 性別與生理量測 52
4.6.1 性別與瞳孔反應 52
4.6.2 性別與皮膚電導反應 56
4.6.3 性別與心率變異分析 57
第五章討論 59
5.1 情緒與心理評量 59
5.2 情緒與臉部表情 60
5.3 情緒與生理量測 60
5.4 性別與心理評量 61
5.5 性別與臉部表情 61
5.6 性別與生理量測 61
第六章結論與建議 63
6.1 結論 63
6.2 建議 66
參考文獻 67
附錄一、研究參與者知情同意書 77

1.內政部統計處(2019.11)。人口數三段年齡組。內政部統計查訊網。取自https://statis.moi.gov.tw/micst/stmain.jsp?sys=100
2.中華民國國家發展委員會(2018.8)。高齡化時程。取自https://www.ndc.gov.tw/Content_List.aspx?n=695E69E28C6AC7F3
3.呂寶靜(2014)。從活力老化觀點談健康促進:美國的作法,臺灣的借鏡。社區發展季刊,145,172-183。
4.衛生福利部國民健康署(2017.11.16)。活躍老化成果論壇三部曲:共創活躍老化、高齡友善新社會。取自https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1137 & pid=7961
5.曾淑芬、張志娟、曾薔霓、劉立凡、陳惠芳(2011)。社區高齡者憂鬱傾向及認知功能狀況之探討-以台灣南部地區社區高齡者為例。嘉南學報,37, 351-364。
6.林惠琴、羅碧(2018.06.19)。吃抗憂鬱藥老人 比例增至12.2%/盛行率高於其他年齡層 1年藥費近8.4億。自由時報。取自https://news.ltn.com.tw/news/life/paper/1209934
7.陳月娥(2019)。109年社政法規大意--看這本就夠了。千華數位文化。
8.陳冠宏、紀玫如(2014)。台灣中老年人常見慢性病之症狀管理認知與因素探討。醫院雙月刊,47(3),34-47。
9.台灣失智症協會(2019.3)。失智人口知多少。取自http://www.tada2002.org.tw/About/IsntDementia#main
10.王飛飛(2018)。大學生情緒管理能力與心理健康。崧燁文化事業有限公司。
11.朱迺欣(2010)。人的情緒面:大腦的角色。載於黃政傑、江惠眞編著,人是什麼:生命教育。高雄復文。
12.李艾、劉鐵剛、席玲 & 盧正華(2013)。正常人群的情緒狀態與瞳孔大小的關係。 眼科新進展,33(11),1075-1077。
13.鍾宜珊(2020)。情緒表徵對膚電、瞳孔和心率變化之影響。國立勤益科技大學工業工程與管理系碩士論文,台中市。 取自https://hdl.handle.net/11296/m5q373
14.Abbruzzese, L., Magnani, N., Robertson, I. H., & Mancuso, M. (2019). Age and Gender Differences in Emotion Recognition. Frontiers in psychology, 10, 2371.
15.Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: the self-assessment manikin and the semantic differential. Journal of behavior therapy and experimental psychiatry, 25(1), 49-59.
16.Backs, R. W., da Silva, S. P., & Han, K. (2005). A comparison of younger and older adults' self-assessment manikin ratings of affective pictures. Experimental aging research, 31(4), 421-440.
17.Bai, Q., Dan, Q., Mu, Z., & Yang, M. (2019). A Systematic Review of Emoji: Current Research and Future Perspectives. Frontiers in psychology, 10, 2221.
18.Bijlstra, G., & Dotsch, R. (2011). FaceReader 4 emotion classification performance on images from the Radboud Faces Database. Unpublished manuscript, Department of Social and Cultural Psychology, Radboud University Nijmegen, Nijmegen, The Netherlands.
19.Brouwer, A. M., & Hogervorst, M. A. (2014). A new paradigm to induce mental stress: the Sing-a-Song Stress Test (SSST). Frontiers in neuroscience, 8, 224.
20.Bach, D. R., Friston, K. J., & Dolan, R. J. (2010). Analytic measures for quantification of arousal from spontaneous skin conductance fluctuations. International Journal of Psychophysiology, 76(1), 52-55.
21.Balzarotti, S., Biassoni, F., Colombo, B., & Ciceri, M. R. (2017). Cardiac vagal control as a marker of emotion regulation in healthy adults: A review. Biological Psychology, 130, 54-66.
22.Birmingham, E., Svärd, J., Kanan, C., & Fischer, H. (2018). Exploring emotional expression recognition in aging adults using the Moving Window Technique. PloS one, 13(10).
23.Barontini, M., Lázzari, J. O., Levin, G., Armando, I., & Basso, S. J. (1997). Age-related changes in sympathetic activity: biochemical measurements and target organ responses. Archives of gerontology and geriatrics, 25(2), 175-186.
24.Bradley, M. M., Codispoti, M., Sabatinelli, D., & Lang, P. J. (2001). Emotion and motivation II: Sex differences in picture processing. Emotion, 1(3), 300-319.
25.Charles, S. T., & Carstensen, L. L. (2010). Social and emotional aging. Annual review of psychology, 61, 383-409.
26.Campbell, A., Ruffman, T., Murray, J. E., & Glue, P. (2014). Oxytocin improves emotion recognition for older males. Neurobiology of aging, 35(10), 2246-2248.
27.Cybulski, M., Cybulski, L., Krajewska-Kulak, E., & Cwalina, U. (2017). Self-assessment of the mental health status in older adults in Poland: a cross-sectional study. BMC psychiatry, 17(1), 383.
28.Chang, Y. C., & Lee, J. (2016). The Impact of Social Context and Personality Toward the Usage of Stickers in LINE. In International Conference on Social Computing and Social Media ,114-122.
29.Chalmers, J. A., Quintana, D. S., Abbott, M. J., & Kemp, A. H. (2014). Anxiety Disorders are Associated with Reduced Heart Rate Variability: A Meta-Analysis. Frontiers in psychiatry, 5, 80.
30.Charles, S. T., & Piazza, J. R. (2009). Age differences in affective well‐being: Context matters. Social and Personality Psychology Compass, 3(5), 711-724.
31.Darwin, C. (1872). The Expression of the Emotions in Man and Animals. London, England: John Murray.
32.Damasio, A. R. (1999). The feeling of what happens: Body and emotion in the making of consciousness. New York: Harcourt Brace.
33.Dawson, M. E., Schell, A. M., & Filion, D. L. (2000). The electrodermal system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.),Handbook of Psychophysiology (2nd ed., pp. 200–223). New York:Cambridge University Press.
34.Ekman, P. (1970). Universal facial expressions of emotions. California mental health research digest, 8(4), 151-158.
35.Ekman, P. (1993). Facial expression and emotion. American psychologist, 48(4), 384.
36.Ekman, P. (1982). Emotion in the human face. Cambridge, England: Cambridge University Press.
37.Ebner, N. C., He, Y. I., & Johnson, M. K. (2011). Age and emotion affect how we look at a face: Visual scan patterns differ for own-age versus other-age emotional faces. Cognition & emotion, 25(6), 983-997.
38.Fiske, A., Wetherell, J. L., & Gatz, M. (2009). Depression in older adults. Annual review of clinical psychology, 5, 363-389.
39.Farroni, T., Menon, E., Rigato, S., & Johnson, M. H. (2007). The perception of facial expressions in newborns. The European journal of developmental psychology, 4(1), 2-13.
40.Freire, A., Eskritt, M., & Lee, K. (2004). Are eyes windows to a deceiver's soul? Children's use of another's eye gaze cues in a deceptive situation. Developmental psychology, 40(6), 1093-1104.
41.Fernández, C., Pascual, J. C., Soler, J., Elices, M., Portella, M. J., & Fernández-Abascal, E. (2012). Physiological responses induced by emotion-eliciting films. Applied psychophysiology and biofeedback, 37(2), 73-79.
42.Fölster, M., Hess, U., & Werheid, K. (2014). Facial age affects emotional expression decoding. Frontiers in psychology, 5, 30.
43.Goleman, D. (1995). Emotional intelligence. New York, NY: Bantam Books.
44.Geethanjali, B., Adalarasu, K., Hemapraba, A., Kumar, S. P. & Rajasekeran, R. (2017). Emotion analysis using SAM (Self-Assessment Manikin) Scale. Special Issue, Biomedical Research, 28, 18-24.
45.Hargrave, R., Maddock, R. J., & Stone, V. (2002). Impaired recognition of facial expressions of emotion in Alzheimer's disease. The Journal of neuropsychiatry and clinical neurosciences, 14(1), 64-71.
46.Hjortsjö, C.H. (1969). Man's face and mimic language. Lund, Sweden: Studentlitteratur.
47.Huang, C. L. C., Hsiao, S., Hwu, H. G., & Howng, S. L. (2012). The Chinese Facial Emotion Recognition Database (CFERD): A computer-generated 3-D paradigm to measure the recognition of facial emotional expressions at different intensities. Psychiatry Research, 200(2-3), 928-932.
48.Holland, C. A., Ebner, N. C., Lin, T., & Samanez-Larkin, G. R. (2019). Emotion identification across adulthood using the Dynamic FACES database of emotional expressions in younger, middle aged, and older adults. Cognition and emotion, 33(2), 245-257.
49.Iwanaga, M., & Tsukamoto, M. (1997). Effects of Excitative and Sedative Music on Subjective and Physiological Relaxation. Perceptual and Motor Skills, 85(1), 287-296.
50.Isaacowitz, D. M., Allard, E. S., Murphy, N. A., & Schlangel, M. (2009). The time course of age-related preferences toward positive and negative stimuli. The journals of gerontology. Series B, Psychological sciences and social sciences, 64(2), 188-192.
51.Jacques, P. S., Dolcos, F., & Cabeza, R. (2010). Effects of aging on functional connectivity of the amygdala during negative evaluation: a network analysis of fMRI data. Neurobiology of aging, 31(2), 315-327.
52.James W. (1884). "What Is an Emotion?". Mind, 9(34), 188-205.
53.Julle-Danière, É., Micheletta, J., Whitehouse, J., Joly, M., Gass, C., Burrows, A. M., & Waller, B. M. (2015). MaqFACS (Macaque Facial Action Coding System) can be used to document facial movements in Barbary macaques (Macaca sylvanus). PeerJ, 3, e1248.
54.Jang, E. H., Park, B. J., Park, M. S., Kim, S. H., & Sohn, J. H. (2015). Analysis of physiological signals for recognition of boredom, pain, and surprise emotions. Journal of physiological anthropology, 34(1), 1-12.
55.Katon, W. J., Lin, E., Russo, J., & Unutzer, J. (2003). Increased medical costs of a population-based sample of depressed elderly patients. Archives of general psychiatry, 60(9), 897-903.
56.Khalfa, S., Isabelle, P., Jean-Pierre, B., & Manon, R. (2002). Event-related skin conductance responses to musical emotions in humans. Neuroscience letters, 328(2), 145-149.
57.Koenig, J., & Thayer, J. F. (2016). Sex differences in healthy human heart rate variability: a meta-analysis. Neuroscience & Biobehavioral Reviews, 64, 288-310.
58.Kop, W. J., Synowski, S. J., Newell, M. E., Schmidt, L. A., Waldstein, S. R., & Fox, N. A. (2011). Autonomic nervous system reactivity to positive and negative mood induction: The role of acute psychological responses and frontal electrocortical activity. Biological psychology, 86(3), 230-238.
59.Kunzmann, U., Kupperbusch, C. S., & Levenson, R. W. (2005). Behavioral Inhibition and Amplification During Emotional Arousal: A Comparison of Two Age Groups. Psychology and Aging, 20(1), 144-158.
60.Kring, A. M., & Gordon, A. H. (1998). Sex differences in emotion: Expression, experience, and physiology. Journal of Personality and Social Psychology, 74(3), 686-703.
61.Lépine, J. P., & Briley, M. (2011). The increasing burden of depression. Neuropsychiatric disease and treatment, 7(1), 3-7.
62.LeMoult, J., Joormann, J., Sherdell, L., Wright, Y., & Gotlib, I. H. (2009). Identification of emotional facial expressions following recovery from depression. Journal of abnormal psychology, 118(4), 828-833.
63.Lo, S. K. (2008). The nonverbal communication functions of emoticons in computer-mediated communication. CyberPsychology & Behavior, 11(5), 595-597.
64.Lei, J., Sala, J., & Jasra, S. K. (2017). Identifying correlation between facial expression and heart rate and skin conductance with iMotions biometric platform. Journal of Emerging Forensic Sciences Research, 2(2), 53-83.
65.Libby Jr, W. L., Lacey, B. C., & Lacey, J. I. (1973). Pupillary and cardiac activity during visual attention. Psychophysiology, 10(3), 270-294.
66.Laukka, S. J., Haapala, M., Lehtihalmes, M., Väyrynen, E., & Seppänen, T. (2013). Pupil size variation related to oral report of affective pictures. Procedia-Social and Behavioral Sciences, 84, 18-23.
67.Liu, S., Tao, X., & Gui, Q. (2019, November). Research on Emotional State in Online Learning by Eye Tracking Technology. 2019 4th International Conference on Intelligent Information Processing, Kuala Lumpur.
68.Lawton, M. P. (1989). Behavior-relevant ecological factors. Social structure and aging: Psychological processes, 57-78.
69.Lobato-Rincón, L. L., Cabanillas-Campos, M., Bonnin-Arias, C., Chamorro-Gutiérrez, E., Murciano-Cespedosa, A., & Sánchez-Ramos Roda, C. (2014). Pupillary behavior in relation to wavelength and age. Frontiers in human neuroscience, 8, 221.
70.McCombe, G., Fogarty, F., Swan, D., Hannigan, A., Fealy, G. M., Kyne, L., Meagher, D., & Cullen, W. (2018). Identified mental disorders in older adults in primary care: A cross-sectional database study. The European journal of general practice, 24(1), 84-91.
71.Moore, C., & Corkum, V. (1998). Infant gaze following based on eye direction. British journal of developmental psychology, 16(4), 495-503.
72.Mauss, I. B., & Robinson, M. D. (2009). Measures of emotion: A review. Cognition and emotion, 23(2), 209-237.
73.Mancini, G., Biolcati, R., Agnoli, S., Andrei, F., & Trombini, E. (2018). Recognition of facial emotional expressions among italian pre-adolescents, and their affective reactions. Frontiers in psychology, 9, 1303.
74.Najafpour, E., Asl-Aminabadi, N., Nuroloyuni, S., Jamali, Z., & Shirazi, S. (2017). Can galvanic skin conductance be used as an objective indicator of children’s anxiety in the dental setting? Journal of clinical and experimental dentistry, 9(3), 377-383.
75.Olafsdóttir, M., Marcusson, J., & Skoog, I. (2001). Mental disorders among elderly people in primary care: the Linköping study. Acta psychiatrica Scandinavica, 104(1), 12-18.
76.Öhman, A., Hamm, A., & Hugdahl, K. (2000). Cognition and the autonomic nervous system: Orienting, anticipation, and conditioning. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (p. 533–575). Cambridge University Press.
77.Riemer, V., Frommel, J., Layher, G., Neumann, H., & Schrader, C. (2017). Identifying Features of Bodily Expression As Indicators of Emotional Experience during Multimedia Learning. Frontiers in psychology, 8, 1303.
78.Ruffman, T., Halberstadt, J., & Murray, J. (2009). Recognition of facial, auditory, and bodily emotions in older adults. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 64(6), 696-703.
79.Rhodes, M. G., & Anastasi, J. S. (2012). The own-age bias in face recognition: a meta-analytic and theoretical review. Psychological bulletin, 138(1), 146-174.
80.Rukmini, A. V., Milea, D., Aung, T., & Gooley, J. J. (2017). Pupillary responses to short-wavelength light are preserved in aging. Scientific reports, 7, 43832.
81.Reed, A. E., Chan, L., & Mikels, J. A. (2014). Meta-analysis of the age-related positivity effect: Age differences in preferences for positive over negative information. Psychology and Aging, 29(1), 1-15.
82.Santorelli, G. D., Ready, R. E., & Mather, M. A. (2018). Perceptions of emotion and age among younger, midlife, and older adults. Aging & Mental Health, 22(3), 421-429.
83.Sproull, L., & Kiesler, S. (1986). Reducing social context cues: Electronic mail in organizational communication. Management science, 32(11), 1492-1512.
84.Schwartz, G. M., Izard, C. E., & Ansul, S. E. (1985). The 5-month-old's ability to discriminate facial expressions of emotion. Infant Behavior and Development, 8(1), 65-77.
85.Skiendziel, T., Rösch, A. G., & Schultheiss, O. C. (2019). Assessing the convergent validity between the automated emotion recognition software Noldus FaceReader 7 and Facial Action Coding System Scoring. PloS one, 14(10), e0223905.
86.Salvi, C., & Bowden, E. M. (2016). Looking for creativity: Where do we look when we look for new ideas? Frontiers in psychology, 7, 161.
87.Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in public health, 5, 258.
88.Shi, H., Yang, L., Zhao, L., Su, Z., Mao, X., Zhang, L., & Liu, C. (2017). Differences of heart rate variability between happiness and sadness emotion states: a pilot study. Journal of Medical and Biological Engineering, 37(4), 527-539.
89.Sullivan, S., & Ruffman, T. (2004). Emotion recognition deficits in the elderly. International Journal of Neuroscience, 114(3), 403-432.
90.Stein, P. K., Kleiger, R. E., & Rottman, J. N. (1997). Differing effects of age on heart rate variability in men and women. The American journal of cardiology, 80(3), 302-305.
91.Umetani, K., Singer, D. H., McCraty, R., & Atkinson, M. (1998). Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. Journal of the American College of Cardiology, 31(3), 593-601.
92.Valderas, M. T., Bolea, J., Laguna, P., Vallverdú, M., & Bailón, R. (2015 August). Human emotion recognition using heart rate variability analysis with spectral bands based on respiration. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan.
93.Van Gerven, P. W., Paas, F., Van Merriënboer, J. J., & Schmidt, H. G. (2004). Memory load and the cognitive pupillary response in aging. Psychophysiology, 41(2), 167-174.
94.Wolf, K. (2015). Measuring facial expression of emotion. Dialogues in clinical neuroscience, 17(4), 457.
95.Williams, D. P., Cash, C., Rankin, C., Bernardi, A., Koenig, J., & Thayer, J. F. (2015). Resting heart rate variability predicts self-reported difficulties in emotion regulation: a focus on different facets of emotion regulation. Frontiers in psychology, 6, 261.
96.Wu, Y., Gu, R., Yang, Q., & Luo, Y. (2019). How Do Amusement, Anger and Fear Influence Heart Rate and Heart Rate Variability? Frontiers in neuroscience, 13, 1131.
97.West, J. T., Horning, S. M., Klebe, K. J., Foster, S. M., Cornwell, R. E., Perrett, D., Burt, D. M., & Davis, H. P. (2012). Age effects on emotion recognition in facial displays: from 20 to 89 years of age. Experimental aging research, 38(2), 146-168.
98.Wirth, M., Isaacowitz, D. M., & Kunzmann, U. (2017). Visual attention and emotional reactions to negative stimuli: The role of age and cognitive reappraisal. Psychology and Aging, 32(6), 543–556.
99.Yu, R. L., Chen, P. S., Tu, S. C., Tsao, W. C., & Tan, C. H. (2018). Emotion-Specific Affective Theory of Mind Impairment in Parkinson’s Disease. Scientific reports, 8(1), 1-8.

電子全文 電子全文(網際網路公開日期:20250809)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top