跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳諺弘
研究生(外文):CHEN,YAN-HUNG
論文名稱:無電電鍍法製備Cu/Ni/Au及Cu/Ag/Au鍍層之研究
論文名稱(外文):Preparation and Investigation of Cu/Ni/Au and Cu/Ag/Au coating via electroless plating
指導教授:蔡明瞭
指導教授(外文):TSAI,MING-LIAO
口試委員:周澤川翁于晴杜景順
口試委員(外文):CHOU,TSE-CHUANWENG,YU-CHINGDO,JING-SHAN
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:110
中文關鍵詞:無電電鍍錯合劑穩定劑
外文關鍵詞:Electroless platingComplexing agentStabilizing agent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試於黃銅珠基材表面上以還原劑次磷酸鈉製備Cu/Ni及以葡萄糖當作還原劑製備Cu/Ag的方法,接著再分別以無電電鍍法製成Cu/Ni/Au及Cu/Ag/Au鍍層。首先將前處理後之銅珠置入配置完成之鍍液中進行沉積,於此過程中控制鍍液溫度、pH值、添加劑種類及濃度,從而得到不同之無電電鍍層後,進行金屬鍍層性質之探討。鍍後之試樣使用螢光膜厚儀測量鍍層厚度,並利用SEM、EDS、金像偏光顯微鏡進行鍍層表面等分析。最後透過270℃過高溫10分鐘及鹽霧試驗,再以四點探針、電化學分析儀對鍍層之性能分析探討。
實驗結果證實在使用還原劑次磷酸鈉無電電鍍鎳的鍍液中添加錯合劑及穩定劑可使鍍液穩定性提升,並得到平整、緻密之鍍層。研究中發現添加醋酸鈉(sodium acetate) 1.5 g/100 ml可得到最為平整之鍍層、厚度約2.48 μm、由磷含量10.33 wt%,可知屬於高磷鍍層。添加0.4 ppm硫脲(thiourea)穩定劑後鍍層平整、厚度2.97 μinch。表面鍍Ni/Au之銅珠經270℃高溫處理後其表面未發生改變,過高溫後穩定性佳。無電電鍍Ni/Au之鍍層經過鹽霧測試24小時後之樣品於金像偏光顯微鏡下可以觀察到樣品表面沒有鏽蝕出現,可有效保護基材。
使用葡萄糖當作還原劑無電電鍍銀的過程中,鍍液中添加錯合劑及穩定劑可提高鍍液中銀離子的穩定性。在添加1.0 g/100 ml的醋酸鈉下鍍層表面平整且緻密,厚度在0.5 μm。添加0.3 g/100 ml之酒石酸後鍍液平整度、包覆性皆提高,銀含量95.61 wt%,且可提高鍍液壽命避免銀鏡反應沉積過快。表面鍍Ag/Au之銅珠經270℃高溫處理後其表面未發生改變,過高溫後穩定性佳。無電電鍍Ag/Au之鍍層經過鹽霧測試24小時後之樣品於金像偏光顯微鏡下可以觀察到樣品表面沒有鏽蝕出現,可有效保護基材。




This study involved the tentative preparation of Cu/Ni with the reducing agent sodium hypophosphite and Cu/Ag with glucose on the substrates of brass beads. First of all the pre-treatment beads were placed in the prepared electroless plating solution for deposition. In this process, the temperature and pH value of the plating solution and concentration of additives were controlled to create various coatings in order to analysis the characteristics of the metalic coatings. The coating thickness of the plated samples were measured by using a fluorescent coating thickness measurer, while the coating surface was analyzed by using SEM, EDS and OM. Finally, the 270℃ excessive temperature test and salt spray test were conducted; sheet resistivity meter and electrochemical analyzer were then used to analyze the property of the coatings.
The experimental results showed that adding the complexing agent and stabilizing agent to the nickel plating solution using sodium hypophosphite as the reducing agent improved the stability of the plating solution, which in turn resulted in the smooth and dense coating. The study found that the addition of 1.5 g/100 ml complexing agent led to the smoothest coating with a thickness of approximately 2.48 μm, which belonged to the coating of high phosphorus due to its high phosphorus content (10.33 wt%). After adding the 0.4 ppm stabilizing agent, the coating was smooth and its thickness was 2.97 μm. After being treated at 270℃ excessive temperature, the surface of the beads coated with Cu/Ni/Au remained unchanged and the stability was favorable. There was no corrosion visible under the polarizing microscope on the surface of the Cu/Ni/Au coated sample 24 hours after the salt spray test, suggesting the effective protection of the substrates.
In the process of silver plating using glucose as the reducing agent, the stability of silver ions was improved by adding the complexing agent and stabilizing agent into the plating solution. The addition of 1.0 g/100 ml complexing agent led to the smooth and dense coating surface, with the thickness being 0.5 μm. The addition of 0.3 g/100 ml stabilizing agent into the plating solution increased the coating smoothness and cladding property, with the silver content being 95.61 wt%, which would also prolong the life of the solution to avoid quick deposition causing problems such as silver mirror reaction. After being treated at 270℃ excessive temperature, the surface of the beads coated with Cu/Ag/Au remained unchanged and the stability was favorable. There was no corrosion visible under the polarizing microscope on the surface of the Ag/Au coated sample 24 hours after the salt spray test, suggesting the effective protection of the base material.


摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1前言 1
第二章 理論與文獻回顧 4
2-1 無電電鍍歷史 4
2-2 無電電鍍文獻 7
2-2-1 無電電鍍鎳 7
2-2-2 無電電鍍銀 9
2-3 黃銅基材 12
2-4 無電電鍍原理 14
2-5 無電電鍍前處理 17
2-6 鍍液之組成 19
2-6-1 還原劑及還原金屬之反應 21
2-7 腐蝕 26
2-7-1 電化學極化現象 29
2-7-2 極化曲線 31
2-8 鹽霧試驗 33
2-9 研究動機 35
第三章 研究方法 36
3-1實驗藥品 36
3-2實驗儀器 39
3-3實驗流程 40
3-3-1無電電鍍流程 40
3-3-2 無電電鍍裝置 43
3-3-3 無電電鍍鎳基礎鍍液 44
3-3-4 無電電鍍銀基礎鍍液 45
3-3-5 無電電鍍金基礎鍍液 46
3-3-6 導通率測試裝置 47
3-4分析儀器 48
3-4-1場發射式電子顯微鏡 48
3-4-2 X射線螢光膜厚儀 49
3-4-3 鹽霧試驗機 50
3-4-4 四點探針 51
3-4-5 電化學分析儀 52
3-4-6金像偏光顯微鏡 53
第四章 結果與討論 54
4-1 無電電鍍鎳乙酸鈉濃度之影響 54
4-1-1乙酸鈉添加量對無電電鍍鎳鍍層表面影響之分析 55
4-1-2乙酸鈉添加量對無電電鍍鎳表面組成(EDS)影響之分析 61
4-1-3乙酸鈉添加量對無電電鍍鎳鍍層厚度影響之分析 62
4-1-4 乙酸鈉濃度對表面鍍鎳之影響 63
4-2 無電電鍍鎳添加硫脲之影響分析 64
4-2-1 硫脲添加量對無電電鍍鎳鍍層表面影響之分析 64
4-2-2 硫脲添加量對無電電鍍鎳鍍層表面組成(EDS)影響之分析 70
4-2-3 硫脲添加量對無電電鍍鎳鍍層厚度影響之分析 71
4-2-4 硫脲濃度對表面鍍鎳之影響 72
4-3 鍍層鹽霧試驗 73
4-3-1 鍍層鹽霧試驗(銅/鎳) 73
4-3-2 鍍層鹽霧試驗(銅/鎳/金) 74
4-4 鍍層電阻及導通率(銅/鎳/金) 75
4-5 鍍層極化曲線比較(銅/鎳/金) 76
4-6 無電電鍍銀添加乙酸鈉之影響分析 77
4-6-1 乙酸鈉添加量對無電電鍍銀鍍層表面影響之分析 77
4-6-2 乙酸鈉添加量對無電電鍍銀鍍層表面組成(EDS)影響之分析 83
4-6-3 乙酸鈉添加量對無電電鍍銀鍍層厚度影響之分析 84
4-6-4 乙酸鈉濃度對表面鍍銀之影響 85
4-7 無電電鍍銀添加酒石酸之影響分析 86
4-7-1 酒石酸添加量對無電電鍍銀鍍層表面影響之分析 86
4-7-2酒石酸添加量對無電電鍍銀鍍層表面組成(EDS)影響之分析 92
4-7-3 酒石酸添加量對無電電鍍銀鍍層厚度影響之分析 93
4-7-4 酒石酸濃度對表面鍍銀之影響 94
4-8 鍍層鹽霧試驗 95
4-8-1 鍍層鹽霧試驗(銅/銀) 95
4-8-2 鍍層鹽霧試驗(銅/銀/金) 96
4-9 鍍層電阻值及導通率(銅/銀/金) 97
4-10 鍍層極化曲線比較(銅/銀/金) 98
4-11 本研究結果與文獻上之比較 99
第五章 結論與建議 101
5-1結論 101
5-2 建議 103
第六章 參考資料 104




[1]顏怡文、林承寬、陳琬菁、劉為開,錫-鋅-金三元系統相平衡與錫-9 鋅銲料添加銅元素與金、鎳基材反應之研究,行政院國家科學委員會專題研究計畫 成果報告,101,0912
[2]鄭婕妤, 066-01 甲醛安全資料表(SDS), 景明化工股份有限公司(2016)
[3]Merck, 甲醛(無酸) stabilized with about 10% methanol and calcium carbonate for history 安全資料表(2017)
[4]World Health Organization, IARC Monographs on the Evalution of Carcinogenic Risks to Humans(2012)
[5]鄭婕妤, 10039-56-2 次亞磷酸鈉安全資料表(SDS), 景明化工股份有限公司(2015)
[6]湯詠婕, 50-99-7 葡萄糖安全資料表(SDS), 景明化工股份有限公司(2018)
[7]百度百科,"C2600黃銅" https://baike.baidu.com/item/C2600%E9%BB%84%E9%93%9C
[8]孫乃文,鋅空氣電池中抑制對鋅陽極緩腐蝕之統整研究,國立勤益科技大學化工與材料工程系碩士論文(2013)
[9]張裕祺,表面處理,高麗圖書(2006) 61-88
[10]張榮珍,表面處理,新文京開發(2004) 44-70
[11]李寧,無電電鍍實用技術,化學工業出版社(2012) 27-35
[12]D. Upadhyaya, M. A. P., R.S. Dubey, V.K. Srivastava, Corrosion of alloys used in dentistry: A review, Materials Science and Engineering A432 (2006)1-11
[13]X. Gan, Y. Wu, L. Liu, B. Shen, W. Hu, Electroless copper plating on PET fabrics using hypophosphite as reducing agent, Surface & Coatings Technology 201 (2007) 7018-7023
[14]S. Rode, C. Henninot, Ce’cile Vallie’res, Michael Matlosz, Complexation Chemistry in Copper Plating from Citrate Baths, Journal of The Electrochemical Society, 151 (6) (2004) C405-C411
[15]T. A. Green, A. E. Russel and S. Roy, The Development of a Stable Citrate Electrolyte for the Electrodeposition of Copper-Nickel Alloys, J. Electrochem. Soc 145(3) (March 1998)
[16]A. Jone, Principles and Prevention of Corrosion 2nd ed. Prentice-Hall, Inc. (1996)
[17]黃惠忠等,奈米材料分析,蒼海書局(2004) 22-33
[18]林獻良,鋁合金表面熱處理改質-電鍍Ni-W代鉻,國立勤益科技大學化工與材料工程系碩士論文(2012)
[19]X. Gan, Y. Wu, L. Liu, B. Shen, W. Hu, Electroless plating of Cu-Ni-P alloy on PET fabrics and effect of plating parameters on the properties of conductive fabrics, J. Alloys Compd. 455(2008) 308-313
[20]L. Yu, L. Guo, R. Preisser, and R. Akolkar, Autocatalysis during Electroless Copper Deposition using Glyoxylic Acid as Reducing Agent, Journal of The Electrochemical Society, 160 (12) (2013) D3004-D3008
[21]O. Mallory, J. B. Hajdu, Edftors, Electroless plating : Fundamentals and Applications, William Andrew (1990)
[22]Yuqin Tian, Haowei Huang, Huihui Wang, Yuhui Xie, Xinxin Sheng, Li Zhong, Xinya Zhang, Accelerated formation of zinc phosphate coatings with enhanced corrosion resistance on carbon steel by introducing α-zirconium phosphate, Journal of Alloys and Compounds, 831 (2020) 154906
[23]P. Meshram, M.K. Punith Kumar, Chandan Srivastava, Enhancement in the corrosion resistance behaviour of amorphous Ni-P coatings by incorporation of graphene, Diamond & Related Materials, 105 (2020) 107795
[24]I. Baskaran, T.S.N. Sankara Narayanan, A. Stephen, Effect of accelerators and stabilizers on the formation and characteristics of electroless Ni-P deposits, Materials Chemistry and Physics, 99 (2006) 117-126
[25]J. Li, D. Wang, H. Cai, A. Wang, J. Zhang, Competitive deposition of electroless Ni-W-P coatings on mild steel via a dual-complexant plating bath composed of sodium citrate and lactic acid, Surface & Coatings Technology, 279 (2015) 9-15
[26]V. Vitry, L. Bonin, Formation and characterization of multilayers borohydride and hypophosphite reduced electroless nickel deposits, Electrochimica Acta, 243 (2017) 7-17
[27]Y.S. Huang, F.Z. Cui, Effect of complexing agent on morphology and microstructure of electroless deposited Ni-P alloy, Surface & Coating Technology, 201 (2007) 5416-5418
[28]Y. Li, R. Liu, J. Zhang, G. Luo, Q. Shen, L. Zhang, Fabrication and microstructure of W-Cu composites prepared from Ag-coated Cu powders by electroless plating, Surface & Coatings Technology, 361 (2019) 302-307
[29]O. Güler, T. Varol, Ü. Alver, A. Çanakçı, The effect of flake-like morphology on the coating properties of silver coated copper particles fabricated by electroless plating, Journal of Alloys and Compounds, 782 (2019) 679-688
[30]J. Lin, C. Wang, S. Wang, Y. Chen, W. He, D. Xiao, Initation electroless nickel plating by atomic hydrogen for PCB final finishing, Chemical Engineering Journal, 306 (2016) 117-123
[31]A. A. Ashtiani, S. Farahji, S. A. Iranagh, A. H. Faraji, The study of electroless Ni-P alloys with different complexing agents on Ck45 steel substrate, Arabian Journal of Chemistry, (2017) 10, S1541-S1545
[32]N. V. Phuong, M.S. Park, C. D. Yim, B. S. You, S. Moon, Corrosion protection utilizing Ag layer on Cu coated AZ31 Mg alloy, Corrosion Science, 136 (2018) 201-209
[33]Z. CAO, X. YIN, Z. JIA, Q. TIAN, J. LU, K. ZHANG, Y. WANG, Corrosion behavior of bulk two-phase Ag-25Cu alloys with different microstructures in Nacl aqueous solution, Trans. Nonferrous Met. Soc. China 29 (2019) 1495-1502
[34]X. Yan, G. Xu, Effect of surface modification of Cu with Ag by ball-milling on the corrosion resistance of low infrared emissivity coating, Materials Science and Engineering B, 166 (2010) 152-157
[35]T. Tetim, Corrosion Behavior of Ag-doped TiO2 Coating on Commercially Pure Titanium in Simulated Body Fluid Solution, Journal of Bionic Engineering, 13 (2016) 397-405
[36]神戶德蔵,無電解鍍金-無電電鍍金技術,國發印刷(1985) 37-51
[37]維基百科,"標準電極電勢表"https://zh.wikipedia.org/wiki/%E6%A0%87%E5%87%86%E7%94%B5%E6%9E%81%E7%94%B5%E5%8A%BF%E8%A1%A8
[38]B.W. Zhang, History-Form the Discovery of Electroless Plating to the Present, Technology, Composition, Structure and Theory (2016) 3-48
[39]D. Upadhyaya, M. A. P., R. S. Dubey, V.K. Srivastava, Corrosion of alloys used in dentisity: A review, Material Science and Engineering A 432 (2006) 1-11
[40]R. Bhandari, Y. H. Ma, Pd–Ag membrane synthesis: The electroless and electro-plating conditions and their effect on the deposits morphology, Journal of Membrane Science 334 (2009) 50-63
[41]C. G. Guo, X. Liu, T. Li, Y. L. Lei1, L. Zhai, Electroless Ag deposition on the cell walls of carbon foam by a displacement method, New Carbon Materials 33(2018) 364-369
[42]T. Li, N. Dang, M. Liang, C. Guo, H. Lu, J. Ma, W. Liang, TEM observation of general growth behavior for silver electroplating on copper rod, Applied Surface Science 28 April 2018
[43]J. Lin, C. Wang, S. Wanga, Y. Chen a, W. He, D. Xiao, Initiation electroless nickel plating by atomic hydrogen for PCB final finishing, Chemical Engineering Journal 306 (2016) 117–123
[44]B. Li, N. Li, G. Luo, D. Tian, Acceleration effect of Na2S2O3 on the immersion gold plating on Ni-P surface from a sulfite based electrolyte, Surface & Coatings Technology 302 (2016) 202–207
[45]周淑芳、王朝正,大氣腐蝕性分類與鹽霧試驗之模擬比對,Journal of Chinese Corrosion Engineering, Vol. 29, No. 4, pp. 219 ~ 228 (2015)
[46]百度百科,"鹽霧試驗"https://baike.baidu.com/item/%E7%9B%90%E9%9B%BE%E6%B5%8B%E8%AF%95
[47]自由的百科全書,"鹽霧試驗"https://zh.wikipedia.org/wiki/%E9%B9%BD%E9%9C%A7%E8%A9%A6%E9%A9%97%E8%A8%AD%E5%82%99

電子全文 電子全文(網際網路公開日期:20250826)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top