(3.215.180.226) 您好!臺灣時間:2021/03/06 16:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林昊龍
研究生(外文):LIN,HAO-LONG
論文名稱:基於Φ-OTDR分佈式光纖振動傳感技術的公路邊坡落石偵測系統的研究與應用
論文名稱(外文):Research and application of rockfall monitoring system for highway slope based on distributed optical fiber vibration sensing technology of Φ-OTDR
指導教授:林正堅林正堅引用關係
指導教授(外文):LIN,CHENG-JIAN
口試委員:潘欣泰郭世崇
口試委員(外文):PAN,XIN-TAIGUO,SHI-CHONG
口試日期:2020-07-10
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:63
中文關鍵詞:落石偵測系統公路邊坡分佈式光纖振動傳感技術
外文關鍵詞:rockfall monitoring systemhighway slopedistributed optical fibervibrationsensing technology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
邊坡工程是交通設施建設中常見的土木工程形式,高陡邊坡的失穩和崩塌、落石等地質災害嚴重威脅著交通運輸安全。隨著臺灣高速公路、山區公路的快速發展,高陡邊坡的安全問題越來越突出,開展高陡邊坡的線上安全偵測與預警迫在眉睫。目前邊坡安全偵測大都採用傳統的電磁類傳感和儀器,這類設備不具備線上偵測以及抗自然界電磁干擾等能力。而基於Φ-OTDR分佈式光纖振動傳感技術具備電磁類傳感無法比擬的技術優勢:具有分佈式偵測、測量距離長,覆蓋範圍廣、抗雷擊等電磁襲擾等,這些優勢特別適用於野外惡劣環境下的工程健康偵測。
本文通過對Φ-OTDR分佈式光纖振動傳感技術進行分析,對高功率、高穩定性鐳射脈衝光源、高速數據採集分析技術、提高信噪比方法、不同振動信號的波形及資料庫樣本分析、傳感光纜的鋪設技術進行研究,同時對信號傳輸、現場告警,視頻聯動技術進行研究,提出一種基於Φ-OTDR分佈式光纖振動傳感技術的公路邊坡落石偵測系統架構,整個系統由五個部分組成:光纖傳感振動偵測子系統、視頻偵測子系統、現場通訊子系統、現場告警子系統及後端軟體平臺。落石偵測系統最終應用於南投落石偵測專案中,即時偵測公路邊坡落石情況,提醒來往車輛人員注意安全,並將落石告警資訊和現場短視頻傳送給運維人員line端,提高運維效率。通過一段時間的持續觀察,落石偵測準確率可達95%以上。

Slope engineering is a common form of civil engineering in the construction of traffic facilities.With the rapid development of expressway and high-speed railway in Taiwan, the safety problem of high and steep slope is more and more prominent.At present, traditional electromagnetic sensors and instruments are mostly used in slope safety monitoring, which are not capable of on-line monitoring and anti-natural electromagnetic interference.And based on the distributed optical fiber vibration sensing technology based on -OTDR has electromagnetic sensors can not be compared with the technical advantages: distributed monitoring, measuring distance, wide coverage, anti-lightning and other electromagnetic harassment, these advantages are particularly suitable for the field in the harsh environment of the engineering health monitoring.
This paper through to theφ- OTDR distributed optical fiber sensing technology were analyzed, and the vibration of high power, high stability of laser pulse light source, high speed data collection and analysis technology, improve the signal-to-noise ratio method, the vibration signal waveform and the database of sample analysis, sensing cable laying technology are studied, and the signal transmission, on-site alarm, video linkage technology research, put forward a based φ- OTDR distributed optical fiber sensing technology in the highway slope rockfall vibration monitoring system architecture, the whole system is composed of five parts: Optical fiber sensor vibration monitoring subsystem, video monitoring subsystem, field communication subsystem, field alarm subsystem and back-end software platform.The rockfall monitoring system is finally applied in the rockfall monitoring project of Nantou to monitor the rockfall situation of the highway slope in real time, remind the traffic personnel to pay attention to safety, and transmit the rockfall warning information and short-sighted frequency to the line terminal of the operation and maintenance personnel to improve the operation and maintenance efficiency.Through a period of continuous observation, the accuracy of rockfall monitoring can reach more than 95%.

摘要 I
Abstract III
目錄 VI
圖目錄 IX
表目錄 XI
第1章 緒論 1
1.1 研究動機 1
1.2 文獻探討 3
1.2.1 邊坡落石偵測文獻探討 3
1.2.2 Φ-OTDR分佈式光纖振動傳感技術文獻探討 5
1.3 論文架構 8
第2章 Φ-OTDR分佈式光纖振動傳感技術 9
2.1 瑞利後向散射簡介 9
2.2 相敏光時域反射儀傳感機理 10
2.2.1 高相干脈衝光瑞利後向散射理論分析 10
2.2.2 OTDR定位原理 12
2.3 系統性能指標及其影響因數 13
2.3.1 傳感距離 13
2.3.2 空間解析度 13
2.3.3 回應頻率 14
2.3.4 信噪比 15
2.4 本章小結 16
第3章 公路邊坡落石偵測系統的設計與實現 17
3.1 系統工作邏輯設計 18
3.2 光纖傳感振動偵測子系統 18
3.2.1 落石振動偵測主機工作原理研究 19
3.2.2 光纖振動偵測主機硬體設計 20
3.2.3 振動傳感光纜設計 21
3.2.4 落石振動告警演算法研究 24
3.3 視頻偵測子系統設計 32
3.3.1 球型彩色攝影機主要技術參數 32
3.3.2 固定式彩色攝影機主要技術參數 33
3.3.3 NVR (影像資料處理系統) 34
3.4 現場告警子系統設計 34
3.5 現場通訊子系統設計 36
3.6 後端軟體設計 37
3.7 後臺採集層 37
3.7.1 演算法及資料庫層 37
3.7.2 應用表現層 38
3.7.3 介面服務層 38
3.7.4 消息服務層 39
3.7.5 規則引擎 40
3.7.6 軟體介面設計 41
第4章 現場試點應用結果與討論 45
4.1 試點應用過程 45
4.1.1 架設振動傳感光纜 45
4.1.2 安裝公路邊坡落石偵測與告警系統 46
4.1.3 模擬落石測試 47
4.2 試點應用結果及分析 47
4.2.1 試點應用結果 47
4.2.2 信號採集結果--P/T/V圖(位置/時間/強度) 49
4.2.3 試點應用數據分析 50
4.2.4 試點落石樣本採集分析與紀錄實驗結果 52
4.2.5 警報等級置信率計算公式 54
4.2.6 對點分析與紀錄實驗結果 55
第5章 結論與未來展望 57
參考文獻 58

[1]S.B.Mickovski, L.P.H.Van Beek.A decision support system for the evaluation of eco-engineeringstrategies for
slopeprotection[J],Geotechnical and Geological
Engineering,2006, 24:483-498.
[2]Jun Xu, Yongxin Wei, and Chungen Li. Discussion on Monitoring Technology Proposal for High and Steep Side-Slope on Railway in Mountain Area[C], Lecture Notes in Electrical Engineering, 2012, 147(1):289-307.
[3]E.Damiano,L. Olivares and L.Picarelli.Steep-slope monitoring in unsaturated pyroclastic soils[J], Engineering Geology, 2012, (137-138): 1-12.
[4]Ritchie, A. The evaluation of rockfall and its control[J]. Highway Research Record, 1963, 17: 13-28.
[5]Bozzolo. D, Pamini. R. Simulation of rockfalls down a valley side[J]. Acta Mechanica, 1986, 63: 113-130.
[6]Fornaro, M., Peila, D., Nebbia, M. Block falls on rock slopes: application of a numerical simulation program to some real cases[C].Proceedings of International Congress International Association of Engineering Geology, 1990, 2173-2180.
[7]Peila D, Pelizza S, Sassudelli F. Evaluation of behavior of rockfall restraining nets by full scale test[J]. Rock Mechanics and Rock Engineering, 1998, 31(1): 1-24.
[8]F. Nicot, M. Gay, J.M. Tacnet. Interaction between a snow mantel and a flexible structure: a new method to design avalanche nets[J]. Cold Regions Science and Technology, 2002, 34(2):67-84.
[9]Chau K T, Wong R H C, Wu J J. Coefficient of restitution and rotational motions of rockfall impacts [J]. International Journal of Rock Mechanics and Mining Science, 2002, 39: 69~77.
[10]A.Cazzani, L.Mongiovi, T.Frenez. dynamic finite element
analysis of interceptive devices for falling rocks[J],
International Journal of Rock Mechanics & Mining
Sciences, 2002, 39 :303-321.
[11]Hisashi Muraishi, Massshiko, Samizo, Tomoyasu Sugiyama, development of a flexible low energy rockfall protection fence[J], Quarterly Report of RTRI, 2005, 46(3):161-166.
[12]D.Castro-Fresno, J.J,del Coz Diaz, L.A.Lopez, evaluation
of resistance capacity cable nets using the finite element
method and experimental validation[J], Engineering
Geology, 2008, 100 :1-10.
[13]Guido Gottardi. Laura Govoni, full-scale modelling of
falling rock protection barriers[J], Rock Mech Rock
Eng ,2010, 43 :261-274.
[14]P. Healey, P. Hensel. Optical time domain reflectometry
by photon counting[J]. Electronics Letters, 1980, 16(16):
631-633.
[15]G. Ripamonti, M. Ghioni, A. Lacaita. No dead-space
optical time-domain reflectometer[J].Journal of
Lightwave Technology, 1990, 8(9): 1278-1283.
[16]F. Scholder, J. D. Gautier, M. Wegmuller, et al.
Long-distance OTDR using photon counting and large
detection gates at telecom wavelength[J]. Optics
Communications, 2002, 213(1-3): 57-61.
[17]P. Eraerds, M. Legre, J. Zhang, et al. Photon Counting
OTDR: Advantages and Limitations[J].Journal of Lightwave
Technology, 2010, 28(6): 952-964.
[18]P. Healey, D. Malyon. OTDR in single-mode fiber at using
heterodyne detection[J]. Electronics Letters, 1982,
18(20): 862-863.
[19]J.Rogers.Polarisation optical time domain
reflectometry[J]. Electronics Letters, 1980, 16(13):
489-490
[20]C. Wu, C. Shang, Z. Li. The three point method for
measurement of P-OTDR sensor[C]. 21st International
Conference on Optical Fibre Sensors (OFS21), Ottawa, 2011,
77532X-77532X-4
[21]H. F. Taylor, C. E. Lee. Apparatus and method for fiber
optic instrusion sensing[P]. U.S. Patent 5, 194, 847,
1993-3-16
[22]S. V. Shatalin, V. N. Treschikov, A. J. Rogers.
Interferometric optical time-domain reflectometry for
distributed optical fiber sensing[C]. SPIE’s
International Symposium on Optical Science Engineering
and Instrumentation, San Diego, 1998, 181-191
[23]J. Park, W. Lee, H. F. Taylor. Fiber optic intrusion
sensor with the configuration of an optical time-domain
reflectometer using coherent interference of Rayleigh
backscattering[C].Photonics China'98, Beijing, 1998,
49-56
[24]J. C. Juarez, E. W. Maier, K. N. Choi, et al. Distributed
Fiber-Optic Intrusion Sensor System[J].Journal of Light 
wave Technology, 2005, 23(6): 2081-2087
[25]J. C. Juarez, H. F. Taylor. Field test of a distributed
fiber-optic intrusion sensor system for long
perimeters[J]. Applied Optics, 2007, 46(11): 1968-1971
[26]Y. J. Rao, J. Luo, Z. L. Ran, et al. Long-distance
fiber-optic Φ-OTDR intrusion sensing system[J]. Proc.
of SPIE, 2009, 7503(75031O): 1-4
[27]H. F. Martins, S. Martin-Lopez, P. Corredera, et al.
Modulation instability-induced fading in phase-sensitive
optical time-domain reflectometry[J]. Optics letters,
2013, 38(6): 872-874
[28]Y. L. Lu, T. Zhu, L. Chen, et al. Distributed Vibration
Sensor Based on Coherent Detection of Phase-OTDR[J].
Journal of Lightwave Technology, 2010, 28(22): 3243-3249

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔