(3.236.175.108) 您好!臺灣時間:2021/03/01 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱創偉
研究生(外文):CIOU, CHUANG-WEI
論文名稱:碳纖維複合材料應用於可攜式質子交換膜燃料電池之雙極板設計製作暨效能探討
論文名稱(外文):Design, Fabrication and Performance Investigation of the Bipolar Plate using Carbon Fiber Composites for Portable Proton Exchange Membrane Fuel Cells
指導教授:管衍德
指導教授(外文):KUAN, YEAN-DER
口試委員:李哲尹李世鳴
口試委員(外文):LEE, CHE-YINLEE, SHI-MIN
口試日期:2020-07-16
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:冷凍空調與能源系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:110
中文關鍵詞:碳纖維燃料電池石墨奈米碳管熱壓碳化
外文關鍵詞:carbon fiberfuel cellgraphitenano carbon tubehot pressingcarbonization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:38
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的主要目的,是將碳纖維複合材料應用於可攜式平面式質子交換膜燃料電池(PEMFC)之雙極板,利用碳纖維之材料特性,使雙極板兼具導電性、抗腐蝕性、高機械強度與熱穩定性。論文中先備置一款加入具導電性石墨或奈米碳管粉末的酚醛樹脂,將碳纖維布平均塗佈預拌好的酚醛樹脂,之後靜置晾乾,製作成碳纖維預浸板。將碳纖維預浸板層疊於模具中,以特定壓力熱壓,使碳纖維預浸板中的樹脂固化成型,形成碳纖維強化複合材料板。使用電腦數值控制車床進行加工成型後,放入高溫爐內充氮碳化與重複預浸處理,最後完成碳纖維雙極板。碳纖維雙極板經過導電性、抗腐蝕性與機械強度測試後,得到各種性質的數據。最終放入不同結構設計之單電池進行性能測試,得到性能曲線後,接著進行穩定性測試,得到不同結構之碳纖維雙極板單電池效能。
The main purpose of this paper is to replace the bipolar plates of portable planar proton exchange membrane fuel cell (PEMFC) with carbon fiber composite materials. Using the characteristics of carbon fiber materials, the bipolar plates are both conductive and corrosion-resistant. First, prepare a piece of phenolic resin with conductive graphite or nano carbon powder, replace the pre-mixed phenolic resin with a carbon fiber cloth, and then leave it to dry to make a carbon fiber prepreg. Assemble the carbon fiber prepreg in the mold and heat press at a specific pressure to cure the resin in the carbon fiber prepreg to form a carbon fiber-reinforced composite material plate. After the computer numerical control lathe is used for processing and molding, it is put into a high-temperature furnace to be filled with nitrogen and carbonized and repeated prepreg treatment, and finally, the carbon fiber bipolar plate is completed. After the carbon fiber bipolar plate is tested for conductivity, corrosion resistance, and mechanical strength, data of various properties are obtained. Finally, put the single cells of different structural design roads for the performance tests. After the performance curve is obtained, the stability test is then carried out to obtain the performance of the carbon fiber bipolar plate single cells of different formulas.
摘要 i
ABSTRACT ii
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1前言 1
1.2研究動機與方向 2
1.3研究架構 4
第二章 背景與文獻回顧 6
2.1 燃料電池簡介 6
2.1.1 PEMFC基本工作原理 8
2.1.2 PEMFC基本構造 10
2.1.3 PEMFC設計 12
2.3高溫碳化 15
第三章 碳纖維材料介紹與製作 16
3.1 碳纖維布種類 16
3.1.1 平紋布 16
3.1.2 展紗布 17
3.1.3單向補強布 18
3.1.4瀝青預浸布 19
3.2 石墨與奈米碳管粉末 20
3.2.1石墨粉末 20
3.2.2奈米碳管粉末 21
3.3 碳纖維板製作流程 22
3.3.1碳纖維板製作 25
3.3.2 碳纖維雙極板切割成型 29
3.3.3碳化 30
3.3.4重複浴浸 32
第四章 不同碳纖維板之性質探討 34
4.1 四點探針量測 34
4.2 穿透電阻 36
4.3 交流阻抗測試 37
4.4 抗腐蝕測試 41
4.5 機械強度測試 45
4.5.1 拉伸強度試驗(Tensile strength testing) 46
4.5.2 彎曲強度試驗 (Flexural strength testing) 51
4.6 鎖合力測試 58
4.7 SEM成像圖片 60
第五章 燃料電池單電池性能測試 62
5.1 MEA活化 62
5.2不同端板材質之單電池性能測試 64
5.2.1 金屬端板與雙極板 66
5.2.2 FR4端板與雙極板 72
5.3 導電性改良設計 77
5.3.1金屬端板與雙極板背面黏貼銅片 79
5.3.2 FR4端板與雙極板背面黏貼銅片 84
5.3.3熱蒸鍍銅薄膜碳纖維雙極板 89
5.4 穩定性測試 102
第六章 結論與未來展望 103
6.1結論 103
6.2未來展望 106
參考文獻 107


[1] J. Larminie and A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons Ltd., New Jersey, USA, 2003.
[2] N.G. Moreno, M.C. Molina, D. Gervasio, J.F.P. Robles, Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost, Renew. Sust. Energ. Rev. 52, 2015, pp. 897-906.
[3] O.Z. Sharaf and M.F. Orhan, An overview of fuel cell technology: fundamentals and applications, Renew. Sust. Energ. Rev. 32, 2014, pp. 810-853.
[4] H. Chen, H.B. Liu, L. Yang, J.X. Li, L. Yang, Study on the preparation and properties of novolac epoxy/graphite composite bipolar plate for PEMFC, Int. J. Hydrog. Energy, Vol. 35, 2010, pp. 3105-3109.
[5] E. Planes, L. Flandin, N. Alberola, Polymer composites bipolar plates for PEMFCs, Energy Procedia, Vol. 20, 2012, pp. 311-323.
[6] K. Kang, S. Park, H. Ju , Effects of type of graphite conductive filler on the performance of a composite bipolar plate for fuel cells, Solid State Ion, Vol. 262 , 2014, pp. 332-336.
[7] U.S. Department of Energy, Fuel cell technical team roadmap, 2013.
[8] E. Middelman et al., Bipolar plates for PEM fuel cells, J. Power Sources, Vol. 118, 2003, pp. 44-46.
[9] V. Mehta and J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources, Vol. 114, 2003, pp. 32-53.
[10] R. Taherian, A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection, J. Power Sources, Vol. 265, 2014, pp. 370-390.
[11] S.R. Dhakate, S. Sharma, M. Borah, R.B. Mathur, T.L. Dhami, Expanded graphite based electrically conductive composites as bipolar plate for PEM fuel cell, Int. J. Hydrog. Energy, Vol. 33, 2008, pp. 7146-7152.
[12] R.A. Antunes, M.C.L. Oliveira, G. Ett, V. Ett, Corrosion of metal bipolar plates for PEM fuel cells: a review, Int. J. Hydrog. Energy, Vol. 35, 2010, pp. 3632-3647.
[13]肖鋼,燃料電池技術,修訂版,全華圖書,2010。
[14] V. Mehta et al., Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources, Vol. 114, 2003, pp. 32-53.
[15] A. Hermann et al., Bipolar plates for PEM fuel cells: A review, Int. J. Hydrog. Energy, Vol. 30, 2005, pp.1297-1302.
[16] E.A. Cho et al., Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells, J. Power Sources, Vol. 125, 2004, pp. 78-182.
[17] R.B. Mathur et al., Effect of different carbon fillers on the properties of graphite composite bipolar plate, J Mater Process Technol, Vol. 203, 2008, pp. 184-192.
[18] B.K. Kakati et al., Electrochemical and mechanical behavior of carbon composite bipolar plate for fuel cell, Int. J. Hydrog. Energy, Vol. 35, 2010, pp. 4185-4194.
[19] H.E. Lee, Novel fabrication process for carbon fiber composite bipolar plates using sol gel and the double percolation effect for PEMFC, Composite Structures, Vol. 134, 2015, pp. 44-51.
[20] W. Li et al., Experimental investigation of expanded graphite/phenolic resin composite bipolar plate, Int. J. Hydrog. Energy, Vol. 41, 2016, pp. 16240-16246.
[21] T. Wilberforce et al., A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells, Renewable and Sustainable Energy Reviews, Vol. 111, 2019, pp. 236-260.
[22] J.W. Lim, Composite structures for proton exchange membrane fuel cells (PEMFC) and energy storage systems (ESS): Review, Composite Structures, Vol. 134, 2015, pp.927-949.
[23] N. Suh, Axiomatic design, Oxford University Press, 2001.
[24] H.N. Yu et al., A graphite-coated carbon fiber epoxy composite bipolar plate for polymer electrolyte membrane fuel cell, J. Power Sources, Vol. 196, 2011, pp. 9896-9875.
[25] J.W. Lim et al., Conductive particles embedded carbon composite bipolar plates for proton exchange membrane fuel cells, Composite Structures, Vol. 108, 2014, pp. 757-766.
[26] M. Kim et al., Bipolar plates made of plain weave carbon/epoxy composite for proton exchange membrane fuel cell, Int. J. Hydrog. Energy, Vol. 37, 2012, pp. 4300-4308.
[27] A. Kraysberg, M. Auinat, Y. Ein-Eli, Reduced contact resistance of PEM fuel cell’s bipolar plates via surface texturing, J. Power Sources, Vol. 164, 2007, pp. 697-703.
[28] C.P. Reghunadhan Nair, R.L. Bindu, K.N. Ninan, Thermal characteristics of addition-cure phenolic resins, Polymer Degradation and Stability, Vol. 73 , 2001, pp. 251-257.
[29] Chun-Ling Liu, Wen-Sheng Dong, Jing-Ren Song, Lang Liu, Evolution of microstructure and properties of phenolic fibers during carbonization, Materials Science and Engineering: A, Vol. 459 , 2007, pp.347–354.
[30] Jie Yang et al., Recycling of carbon fibre reinforced epoxy resin composites under various oxygen concentrations in nitrogen–oxygen atmosphere, Journal of Analytical and Applied Pyrolysis, Vol. 112, 2015, pp. 253-261.
[31] William A. Maryniak, Toshio Uehara, Maciej A. NorasSurface, Resistivity and Surface Resistance Measurements Using a Concentric Ring Probe Technique, TREK INC., 2013.
[32] M.Ciureanu et al., PEM fuel cells as membrane reactors: kinetic analysis by impedance spectroscopy, Catalysis Today, Vol. 82, 2003, pp. 195-206.
[33] Jae-DongKim et al., Characterization of CO tolerance of PEMFC by ac impedance spectroscopy, Solid State Ionics, Vol. 140, 2001, pp. 313-325.
[34] J.M. Song et al., Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method, J. Power Sources, Vol. 94, 2001, pp. 78-84.
[35] Yang Li and Wen-Jin, MengSwathy SwathirajanStephen J. HarrisGary L. Doll, Corrosion resistant PEM fuel cell, US Patent US5624769A, 1995.
[36] Vachtsevanos et al., Corrosion Processes:Sensing, Monitoring, George Data Analytics, Prevention/Protection, Diagnosis/Prognosis and Maintenance Strategies, USA, 2020.
[37] ASTM International, ASTM D 3039-14, 2014.
[38]ASTM International, ASTM D 709-17, 2017.
[39] Joseph R. Davis, Tensile Testing, 2nd Edition, 2004, pp. 93-95.
[40] Fatma Gül Boyacı San and Osman Okur, The effect of compression molding parameters on the electrical and physical properties of polymer composite bipolar plates, Int. J. Hydrog. Energy, Vol. 42, 2017, pp. 23054-23069.
[41] H.S. Leea, H.J. Kima, S.G. Kima, S.H. Ahn, Evaluation of graphite composite bipolar plate for PEM (proton exchange membrane) fuel cell: Electrical, mechanical, and molding properties, Journal of Materials Processing Technology, Vol. 187-188, 2007, pp.425-428.
[42] Erhard Klar and Prasan K. Samal, Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties, 2007, p.55.
[43] J. John, S.A. Gangadhar, I. Shah, Flexural strength of heat-polymerized polymethyl methacrylate denture resin reinforced with glass, aramid, or nylon fibers, Journal of Prosthetic Dentistry, Vol. 86, 2001, pp. 424-427.
[44] ASTM International, ASTM D 709-01, 2001.
[45] U.S. Department of Energy, DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components, 2016.
[46] D. Haack et al. , Carbon-Carbon Bipolar Plates, 2007 Annual Progress Report, 2007.
[47] Zhigang Qi et al., Activation of low temperature PEM fuel cells, J. Power Sources, Vol. 111, 2002, pp. 181-184.
[48] Chih-Yung Wen et al., Application of a thermally conductive pyrolytic graphite sheet to thermal management of a PEM fuel cell, J. Power Sources, Vol. 178, 2008, pp. 132-140.
[49] R.F. Mann et al., Application of Butler–Volmer equations in the modelling of activation polarization for PEM fuel cells, J. Power Sources, Vol. 161, 2006, pp. 775-781.

電子全文 電子全文(網際網路公開日期:20250814)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔