[1]IEC 61400-1, in International Standard Wind turbines – Part 1: Design requirements (3rd edition.), International Electrotechnical Commission, 2005.
[2]4C offshore 2019, https://www.4coffshore.com/windfarms/windspeeds.aspx
[3]Ju, S.H., Huang, Y.C. and Hsu, H.H., Parallel analysis of offshore wind turbine structures under ultimate load. Applied Science, Vol. 9, No.4708, 2019.
[4]Ju, S.H and Huang, Y.C., Analyses of offshore wind turbine structures with soil-structure interaction under earthquakes. Ocean Engineering, Vol.187, No.106190, 2019.
[5]Ju, S.H. and Huang, Y.C., MTMD to increase fatigue life for OWT jacket structures using Powell’s method. Marine Structures, Vol. 71, No. 102726, 2020.
[6]Jonkman, J., Butterfield S., Musial, W. and Scott, G., Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Technical Report NREL/TP-500-38060.National Renewable Energy Laboratory; 2009.
[7]Bac, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Hendriksen, L.C., Natarajan, A. and Hensen, M.H., Description of the DTU 10 MW Reference Wind Turbine, DTU Wind Energy Report-I-0092, 2013.
[8]Oest, J., Sørensen, R., Overgaard, L. and Lund, E., Structural optimization with fatigue and ultimate limit constraints of jacket structures for large offshore wind turbines. Structural and Multidisciplinary Optimization, Vol. 55, pp. 779–793, 2017.
[9]Kaveh, A. and Sabeti, S., Optimal design of jacket supporting structures for offshore wind turbines using CBO and ECBO algorithms. Periodica Polytechnica Civil Engineering, Vol. 62, No. 3, pp. 545-554, 2018.
[10]AlHamaydeh, M., Barakat, S. and Nasif, O., Optimization of support structures for offshore wind turbines using genetic algorithm with domain-trimming. Mathematical Problems in Engineering, 2017.
[11]Ichter, B., Steele, A., Loth, E., Moriarty, P. and Selig, M.S., A morphing downwind‐aligned rotor concept based on a 13‐MW wind turbine, Wind Energy, Vol. 19, pp. 625–637, 2016.
[12]Gentils, T., Wong, L. and Kolios, A., Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm, Applied Energy, Vol. 199, pp. 187–204, 2017.
[13]Kooijman, H.J.T., Lindenburg, C., Winkelaar, D. and Hooft, E.L., Aero-elastic modelling of the DOWEC 6 MW pre-design in PHATAS, DOWEC 6 MW PRE-DESIGN, 2003.
[14]Bak, C., Bitsche, R., Yde, A., Kim, T., Hansen, M.H. and Behrens, T., Light Rotor: The 10-MW reference wind turbine. In Proceedings of EWEA 2012 - European Wind Energy Conference & Exhibition European Wind Energy Association (EWEA), 2012.
[15]Cox, K. and Echtermeyer, A., Structural design and analysis of a 10MW wind turbine blade. Energy Procedia 24, pp. 194 – 201, 2012.
[16]Desmond, C., Murphy, J., Blonk, L. and Haans, W., Description of an 8 MW reference wind turbine. The Science of Making Torque from Wind (TORQUE 2016), Journal of Physics: Conference Series, Vol. 753, No. 092013, 2016.
[17]Bengga, G., Guma, G., Lutz, T. and Krämer, E., Numerical simulations of a large offshore wind turbine exposed to turbulent inflow conditions. Wind Engineering, Vol. 42, No. 2, pp. 88-96, 2018.
[18]Mo, W., Li, D., Wang, X. and Zhong, C., Aeroelastic coupling analysis of the flexible blade of a wind turbine, Energy, Vol. 89, pp. 1001-1009, 2015.
[19]Richards, P.W., Griffith, D.T. and Hodges, D.H., Aeroelastic design of large wind turbine blades considering damage tolerance. Wind Energy, Vol. 20, pp. 159–170, 2017.
[20]Hand, B. and Cashman, A., Aerodynamic modeling methods for a large-scale vertical axis wind turbine. Renewable Energy, Vol. 129, pp. 12-31, 2018.
[21]Lian, J., Jia, Y., Wang, H. and Liu, F., Numerical Study of the Aerodynamic Loads on Offshore Wind Turbines under Typhoon with Full Wind Direction, Energies, Vol. 9, No. 613, 2016.
[22]Armirinia, G. and Jung, S., Buffeting response analysis of offshore wind turbines subjected to hurricanes. Ocean Engineering, Vol. 141, pp. 1–11, 2017.
[23]Zhang, J., Guo, L., Wu, H., Zhou, A., Hu, D. and Ren, J., The influence of wind shear on vibration of geometrically nonlinear wind turbine blade under fluid-structure interaction. Ocean Engineering, Vol. 84, pp. 14-19, 2014.
[24]Zuo, Y., Cheng, Z., Sandvik, P.C. and Gao, Z. An integrated dynamic analysis method for simulating installation of single blades for wind turbines, Ocean Engineering, Vol. 152, pp. 72–88, 2018.
[25]Noyes, C., Qin, C. and Loth, E., Pre-aligned downwind rotor for a 13.2 MW wind turbine. Renewable Energy, Vol. 116, pp. 749-754, 2018.
[26]AlHamaydeh, M., Barakat, S. and Nasif, O., Optimization of Support Structures for Offshore Wind Turbines Using Genetic Algorithm with Domain-Trimming, Mathematical Problem in Engineering. No. 5978375, 2017.
[27]Loth, E., Steele, A., Qin, C., Ichter, B., Selig, M.S. and Moriarty, P., Downwind pre‐aligned rotors for extreme‐scale wind turbines. Wind Energy. Vol. 20, pp. 1241–1259, 2017.
[28]Liu, J., Thomas, E., Manuel, L., Griffith, D., Ruehl, K. and Barone, M., Integrated System Design for Large Wind Turbine Supported on a Moored Semi-submersible Platform. Journal of Marine Science and Engineering. Vol. 6, No. 9, 2018.
[29]Wang, X., Zeng, X., Yang, X. and Li, J., Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling, Applied Energy, Vol. 209, pp. 127-139, 2018.
[30]Qin, C., Saunders, G. and Loth, E., Offshore wind energy storage concept for cost-of-rated-power savings. Applied Energy, Vol. 201, pp.148-157, 2017.
[31]Alati, N., Failla, G., Arena, F., Seismic analysis of offshore wind turbines on bottom-fixed support structures. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Science, Vol. 373, 2015.
[32]Mardfekri, M. and Gardoni, P., Multi-hazard reliability assessment of offshore wind turbines. Wind Energy, Vol. 18, pp.1433-1450, 2015.
[33]Anastasopoulos, I. and Theofilou, M. Hybrid foundation for offshore wind turbines: Environmental and seismic loading. Soil Dynamics and Earthquake Engineering, Vol. 80, pp. 192–209, 2016.
[34]Santangelo, F., Failla, G., Arena, F. and Ruzzo, C., On time-domain uncouple analyses for offshore wind turbines under seismic loads. Bulletin of Earthquake Engineering. Vol. 16, pp. 1007-1040, 2018.
[35]Prowell, I., Elgamal, A., Uang, C.M., Enrique, L.J., Romanowitz, H. and Duggan, E. Shake table testing and numerical simulation of a utility-scale wind turbine including operational effects. Wind Energy. Vol. 17, pp. 997–1016, 2014.
[36]Mo, R., Kang, H., Li, H. and Zhao, X., Seismic fragility analysis of monopole offshore wind turbines under different operational conditions. Energies, Vol. 10, No. 1037, 2017.
[37]Patil, A., Jung, S. and Kwon, O., Structural performance of a parked wind turbine tower subjected to strong ground motions. Engineering Structure, Vol. 120, pp. 92–102, 2016.
[38]Asareh, M., Schonber, W. and Volz, J., Fragility analysis of a 5-MW NREL wind turbine considering areo-elastic and seismic interaction using finite element method. Finite Element in Analysis and Design, Vol. 120, pp. 57-67, 2016.
[39]Yuan, C., Chen, J., Li, J., Xu, Q., Fragility analysis of large-scale wind turbines under the combination of seismic and aerodynamic loads. Renewable Energy Vol. 113, pp. 1122-1134, 2017.
[40]Haciefendioglu, K., Stochastic seismic response analysis of offshore wind turbine including fluid-structure-soil interaction. The Structural Design of Tall and Special Buildings, Vol. 12, pp. 867-878, 2012.
[41]Harte, M., Basu, B. and Nielsen, S., Dynamic analysis of wind turbines including soil-structure interaction. Engineering Structures, Vol. 45, pp. 509–518, 2014.
[42]Ku, C., Chien, L., Modeling of Load Bearing Characteristics of Jacket Foundation Piles for Offshore wind turbines in Taiwan. Energies, Vol. 9, No. 8, pp. 625, 2016.
[43]Santangelo, F., Failla, G., Santini, A. and Arena, F., Time-domain uncoupled analyses for seismic assessment of land-based wind turbines. Engineering Structures, Vol. 123, pp. 275-299, 2016.
[44]Wang, W., Gao, Z., Li, X. and Moan, T., Model test and numerical analysis of a multi-pile offshore wind turbine under seismic, wind, wave, and current loads. Journal of Offshore Mechanics and Arctic Engineering, Vol. 139, issue 3, 2017.
[45]Austin, S. and Jerath, S., Effect of soil-foundation-structure interaction on seismic response of wind turbines. Ain Shams Engineering Journal, Vol. 8, No. 3, pp. 323–331, 2017.
[46]Huo, T., Tong, L., Zhang, Y., Dynamic response analysis of wind turbine tubular towers under long-period ground motions with the consideration of soil-structure interaction. Advanced Steel Construction, Vol. 14, No. 2, pp. 227-250, 2018.
[47]Kjørlaug, R.A. and Kaynia, A.M., Vertical earthquake response of megawatt-sized wind turbine with soil-structure interaction effects. Earthquake Engineering Structural Dynamics, Vo. 44, No. 13, pp. 2341–2358, 2015.
[48]Vatanchian, M. and Shooshtari, A., Investigation of soil-structure interaction effects on seismic response of a 5MW wind turbine. International Journal of Civil Engineering, Vol.16, pp.1-17, 2018.
[49]Alamo, G.M., Aznarez, J.J., Padron, L.A., Martínez-Castro, A.E., Gallego, R., Maeso, O., Dynamic soil-structure interaction in offshore wind turbines on monopiles in layered seabed based on real data. Ocean Engineering, Vol. 156, pp. 14-24, 2018.
[50]Zhang, P., Xiong, K., Ding, H., Le, C., Anti-liquefaction characteristics of composite bucket foundations for offshore wind turbines. Journal of Renewable and Sustainable Energy, Vol. 6, 053102, 2014.
[51]Zhang, P., Ding, H. and Le, C., Seismic response of large-scale prestressed concrete bucket foundation for offshore wind turbines. Journal of Renewable and Sustainable Energy, Vol. 6, 2014.
[52]IEC 61400-3, in International Standard Wind turbines - Part 3: Design requirements for offshore wind turbines (1st ed.). International Electrotechnical Commission, 2009.
[53]DNVGL-ST-0437, Loads and site conditions for wind turbines, Det Norske Veritas: Norway, 2016.
[54]DNV-RP-C205, Environmental Conditions and Environmental Load, Det Norske Veritas: Norway, 2010.
[55]DNVGL-RP-C203, Fatigue design of offshore steel structures, Det Norske Veritas: Norway, 2016.
[56]DNVGL-RP-0034, Steel forgings for subsea applications, Det Norske Veritas: Norway, 2015.
[57]DNVGL-ST-0126, Support structures for wind turbines, Det Norske Veritas: Norway, 2016.
[58]El-Reedy, M.A., Chapter 4 - Offshore structures design, in Marine Structural Design Calculations, Butterworth-Heinemann: Oxford. pp. 85-187, 2015.
[59]Leblanc, C., B.W. Byrne, and G.T. Houlsby, Response of stiff piles to random two-way lateral loading. Geotechnique, Vol. 60, No. 9, pp. 715-721, 2010.
[60]Lee, Y.-L. and T. Tjhung, Chapter 3 - Rainflow Cycle Counting Techniques, in Metal Fatigue Analysis Handbook, Butterworth-Heinemann: Boston, 2012.
[61]Al Shamaa, D. and K. Geissler, Generalized consideration of endurance limit for fatigue stress analysis by means of fatigue life curves. Stahlbau, Vol. 82, No. 2, pp. 87-96, 2013.
[62]Rafsanjani, H.M. and J.D. Sorensen, Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines. Energies, Vol. 8, No. 4, pp. 2908-2923, 2015.
[63]Yeter, B., Y. Garbatov, and C.G. Soares, Fatigue damage assessment of fixed offshore wind turbine tripod support structures. Engineering Structures, Vol. 101, pp. 518-528, 2015.
[64]Saini, D.S., D. Karmakar, and S. Ray-Chaudhuri, A review of stress concentration factors in tubular and non-tubular joints for design of offshore installations. Journal of Ocean Engineering and Science, Vol. 1, No. 3, pp.186, 2016.
[65]Wang, K.P., Ji, C.Y., Xue, H.X. and Tang, W.T., Fatigue damage characteristics of a semisubmersible-type floating offshore wind turbine at tower base. Journal of Renewable and Sustainable Energy, Vol. 8, No. 5, pp. 16, 2016.
[66]Yeter, B., Garbatov Y., and Soares C.G., Evaluation of fatigue damage model predictions for fixed offshore wind turbine support structures. International Journal of Fatigue, Vol. 87, pp. 71-80, 2016.
[67]Remani, C., Numerical Methods for Solving Systems of Nonlinear Equations, in Mathematical Sciences, Lakehead University: Ontario, Canada, 2012.
[68]Dong, W.B., Moan T., and Gao, Z., Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain. Engineering Structures, Vol. 33, No. 6, pp. 2002-2014, 2011.
[69]Schaumann, P., Lochte-Holtgreven S., and Steppeler, S., Special fatigue aspects in support structures of offshore wind turbines. Materialwissenschaft Und Werkstofftechnik, Vol. 42, No. 12, pp. 1075-1081, 2011.
[70]Zhao, R.Y., Shen W.Z., Knudsen, T. and Bak, T., Fatigue distribution optimization for offshore wind farms using intelligent agent control. Wind Energy, Vol.15, No. 7, pp. 927-944, 2012.
[71]Brennan, F. and I. Tavares, Fatigue design of offshore steel mono-pile wind substructures. Proceedings of the Institution of Civil Engineers-Energy, 167(4): p. 196-202, 2014.
[72]Zwick, D. and Muskulus, M., The simulation error caused by input loading variability in offshore wind turbine structural analysis. Wind Energy, Vol. 18, No. 8, Pp. 1421-1432, 2015.
[73]Dührkop, J., von Borstel, T., Pucker, T. and Nielsen, M., Influence of soil and structural stiffness on the design of jacket type substructures. Stahlbau, Vol.85, No. 9, pp. 612, 2016.
[74]Zwick, D. and Muskulus, M., Simplified fatigue load assessment in offshore wind turbine structural analysis. Wind Energy, Vol. 19, No. 2, pp. 265-278, 2016.
[75]Marino, E., Giusti, A. and Manuel, L., Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds. Renewable Energy, Vol. 102, pp. 157-169, 2017.
[76]Hafele, J., Huebler, C., Gebhardt, C.G. and Rolfes, R., A comprehensive fatigue load set reduction study for offshore wind turbines with jacket substructures. Renewable Energy, Vol.118, pp. 99-112, 2018.
[77]Tibaldi, C., Kim, T., Larsen, T.J., Rasmussen, F., de Rocaa Serra, R. and Sanz, F., Investigation on wind turbine resonant vibration. Wind Energy, Vol. 19, pp. 847-859, 2016.
[78]Zhang, Z., Nielsen, S., Balaabjerg, F. and Zhou, D., Dynamics and control of lateral tower vibrations in offshore wind turbines by means of active generator torque. Energies, Vol.7, pp. 7746-7772, 2017.
[79]Manikandan, R. and Saha, N., Dynamic modelling and non-linear control of TLP supported offshore wind turbine under environmental loads. Marine Structures, Vol. 64, pp. 263-294, 2019.
[80]Zheng, M., Yang, Z., Yang, S. and Still, B., Modeling and mitigation of excessive dynamic responses of wind turbines founded in warm permafrost. Engineering Structures; Vol. 148, pp.36-46, 2017.
[81]Nigdeli, S.M. and Bekdas, G., Optimum tuned mass damper design in frequency domain for structures. KSCE Journal of Civil Engineering, Vol. 21, No. 3, pp. 912-922, 2017.
[82]Zhang, Z.L., Chen, J.B. and Li, J., Theoretical study and experimental verification of vibration control of offshore wind turbines by a ball vibration absorber. Structure and Infrastructure Engineering, Vol. 10, No. 8, pp.1087-1100, 2013.
[83]Chen, J. and Georgakis, C.T., Tuned rolling-ball dampers for vibration control in wind turbines. Journal of Sound and Vibration, Vol. 332, No. 21, pp. 5271-5282, 2013.
[84]Sun, C. and Jahagiri, V., Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper. Mechanical Systems and Signal Processing, Vol. 105, pp. 338-360, 2018.
[85]He, E.M., Hu, Y.Q. and Zhang, Y., Optimization design of tuned mass damper for vibration suppression of a barge-type offshore floating wind turbine. Processing of the Institution of Mechanical Engineers, part M, Vol. 231, No. 1, pp. 302-315, 2017.
[86]Stewart, G. and Lackner, M., Offshore wind turbine load reduction employing optimal passive tuned mass damping systems. IEEE Transactions on Control System Technology, Vol. 21, No. 4, pp. 1090-104, 2013.
[87]Fitzgerald, B. and Basu, B., Structural control of wind turbines with soil structure interaction included. Engineering Structures, Vol. 111, pp. 131-151, 2016.
[88]Lackner, M. and Rotea, M., Passive structural control of offshore wind turbines. Wind Energy, Vol. 14, pp. 373–388, 2011.
[89]Li, C., Zhuang, T., Zhou, S., Xiao, Y. and Hu, G., Passive vibration control of a semi-submersible floating offshore wind turbine. Applied Science, Vol. 7, pp. 509, 2017.
[90]Jiang Z., The impact of a passive tuned mass damper on offshore single-blade installation. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 176, pp. 65-77, 2018.
[91]Stewart, G. and Lackner, M., The impact of passive tuned mass dampers and wind-wave misalignment on offshore wind turbine loads. Engineering Structures, Vol. 73, pp. 54-61, 2014.
[92]Brodersen, M., Bjørke, A.S. and Høgsberg, J., Active tuned mass damper for damping of offshore wind turbines. Wind Energy, Vol. 20, pp. 783-796, 2017.
[93]Mensah, A. and Duenas-Osorio, L., Improved reliability of wind turbine towers with tuned liquid column dampers (TLCDs). Structural Safety, Vol. 47, pp. 78-86, 2014.
[94]Mousavi, S.A., Bargi, K. and Zahrai, S.M., Optimum parameters of tuned liquid column–gas damper for mitigation of seismic-induced vibrations of offshore jacket platforms. Structural Control and Health Monitoring, Vol. 20, No. 3, pp. 422–444, 2013.
[95]Bargi, K., Dezvareh, R. and Mousavi, S.A., Contribution of tuned liquid column gas dampers to the performance of offshore wind turbines under wind, wave, and seismic excitations. Earthquake Engineering and Engineering Vibrations, Vol. 15, pp. 551-561, 2016.
[96]Coudurier, C., Lepreux, O. and Petit, N., Passive and semi-active control of an offshore wind turbine using a tuned liquid column damper. IFAC-PapersOnLine, Vol. 48, No. 16, pp. 241–247, 2015.
[97]Jaksic, V., Wright, C.S., Murphy, J., Afeel, C., Ali, S.F., Mandic, D.P. and Pakrashi, V., Dynamic response mitigation of floating wind turbine platforms using tuned liquid column dampers. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Science, Vol. 373, 2018.
[98]Hussan, M., Rahman, M.S., Sharmin, F., Kim, D. and Do, J., Multiple tuned mass damper for multi-mode vibration reduction of offshore wind turbine under seismic excitation. Ocean Engineering, Vo. 160, pp. 449-460, 2018.
[99]Satino, A. and Basu, B., Dynamics and control of vibrations in wind turbines with variable rotor speed. Engineering Structures, Vol. 56, pp. 58-67, 2013.
[100]Zheng, M., Yang, Z., Yang, S. and Still, B., Modeling and mitigation of excessive dynamic responses of wind turbines founded in warm permafrost. Engineering Structures, Vol. 148, pp. 36-46, 2017.
[101]Bekdas, G. and Nigdeli, S.M., Estimating optimum parameters of tuned mass dampers using harmony search. Engineering Structures, Vol. 33, pp. 2716-2723, 2011.
[102]Nigdeli, S.M. and Bekdas, G., Optimum tuned mass damper design in frequency domain for structures. KSCE Journal of Civil Engineering, Vol. 21, No. 3, pp.912-922, 2017.
[103]International Code Council. International Building Code 2006; International Code Council: Birmingham, AL, USA, 2006.
[104]MIT. SIMQKE: A Program for Artificial Motion Generation: User's Manual and Documentation. M.I.T. Department of Civil Engineering; 1976.
[105]Idriss, I.M., Sun, Joseph, I., User's manual for SHAKE91: a computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits, Center for Geotechnical Modeling, Dept. of Civil and Environmental Engineering, University of California at Davis, Davis, California, 1993.
[106]Matlock, H. Correlations for design of laterally loaded piles in soft clay. Proceedings of the II Annual Offshore Technology Conference, Houston, Texas, (OTC 1204), pp. 577-594, 1970.
[107]American Petroleum Institute, “Recommended practice for planning, designing and constructing fixed offshore platforms, API Recommended Practice 2A (RP-2A), 17th edition, 1987.
[108]Jonkman, J., Butterfield, S., Musial, W. and Scott, G., Definition of a 5-MW Reference Wind Turbine for Offshore System Development. Technical Report NREL/TP-500-38060.National Renewable Energy Laboratory; 2009.
[109]Jonkman, B.J. and Buhl, M., TurbSim User’s Guide v2.00.00. National Renewable Energy Laboratory, Golden, CO, Technical Report No. NRELEL-500-36970, 2004
[110]Jonkman, B. and Jonkman, J., FAST v8.15.00a-bjj. National Renewable Energy Laboratory: Golden, CO 80401; 2016.
[111]Morison, J.R., Johnson, J.W. and Schaaf, S.A., The force exerted by surface waves on piles. Journal of Petroleum Technology, Vol. 2, pp. 149–154, 1950.
[112]American Association of State Highway and Transportation Officials. AASHTO LRFD Bridge Design Specifications, 6th ed.; with 2013 Interim Revisions; US Customary Units; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2013.
[113]American Society of Civil Engineers. ASCE 7: Minimum Design Loads for Buildings and Other Structures; American Society of Civil Engineers: Reston, VA, USA, 2003.
[114]Certification of Wind Turbines for Tropical Cyclone Conditions; GL Renewables Certification Technical Note; DNV GL, 2013.
[115]Ju, S.H., Su, F.C., Jiang, Y.T. and Chiu, Y.C., Ultimate load design of jacket‐type offshore wind turbines under tropical cyclones. Wind Energy, Vol. 22, pp. 685–697, 2019.
[116]Bak, C., Zahle, F., Bitsche, R., Kim, T., Anders, Y. and Henriksen, L.C.; Natarajan, A. and Hansen, M.H., Description of the DTU 10 MW Reference Wind Turbine; Technical University of Denmark: Roskilde, Denmark, 2013.
[117]IEC 61400-3, in International Standard Wind turbines - Part 3: Design requirements for offshore wind turbines, International Electrotechnical Commission,2019.
[118]Sadek, F., Mohraz, B., Taylor, A.W., Chung, R.M., A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Engineering Structural Dynamics, Vol. 26, pp. 617-635, 1997.
[119]Ju, S.H., Su, F.C., Ke, Y.P. and Xie, M.H., Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme. Renewable Energy; Vol. 136, pp. 69-28, 2019.
[120]Ju, S.H., Lin, H.D., Hsueh, C.C. and Wang, S.L., A simple finite element model for vibration analyses induced by moving vehicles. International Journal for Numerical Methods in Engineering, Vol. 68, No. 12, pp. 1232-1256, 2006.
[121]Powell, M. J. D. An efficient method for finding the minimum of a function of several variables without calculating derivatives, Computer Journal, Vol. 7, No. 2, pp. 155–162, 1964.
[122]Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vettenling, W.T. Numerical recipes, the art of scientific computing. Cambridge University Press, New York, 1986.
[123]黃隱玉,大型化套管式離岸風機支撐結構設計之研究,國立成功大學碩士論文, 2017.