(18.204.227.34) 您好!臺灣時間:2021/05/19 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:捷樂瑪
研究生(外文):RahmaPermata
論文名稱:模擬細節與強度差異於鋼梁柱接頭耐震評估影響研究
論文名稱(外文):Effects of Modeling Details and Strength Variation on Seismic Performance Evaluation of Steel Beam-to-column Connections
指導教授:賴啟銘賴啟銘引用關係張惠雲張惠雲引用關係
指導教授(外文):Chi-Ming LaiHeui-Yung Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:85
中文關鍵詞:鋼抗彎矩接頭耐震性能建模細節強度差異有限元分析
外文關鍵詞:steel moment connectionsseismic performancemodeling detailsstrength differencefinite element analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究之主要目的在於,探討建模細節和強度差異於抗彎矩鋼梁柱接頭耐震性能評估之影響。具體而言,首先應用有限元分析(FEA)技術,建立鋼梁腹板與柱透過剪力板栓接而梁翼板與柱銲接 (BWWF) 之SN490B鋼梁柱接頭模型。然後,上述模型之分析細節經簡化到6個不同程度,再以ANSYS軟體分析各個接頭模型之受震反應。結果顯示,所有模型都預測破壞發生在柱面與梁翼銲道外側的母材,但破壞潛勢隨模型簡化而有被低估的傾向。上述模型也被用於研究採用全銲接細節的鋼梁柱接頭,而結果顯示其破壞潛勢明顯地低於對應之BWWF接頭。鋼梁翼板與腹板之材料強度差異也經檢討。結果顯示,如果梁腹板之材料強度過大,忽略此差異將會導致低估接頭破壞潛勢。這也意味著,如果梁腹板的材料強度相對較低,則接頭破壞潛勢可能降低,特別是對於BWWF接頭而言。
The primary objective of this study is to investigate the effects of modeling details and strength difference on the seismic performance evaluation for steel moment connections. In detail, the techniques of finite element analysis (FEA) were first applied to develop a model for a SN490B steel bolted-web-and-welded-flange (BWWF) connection. The model was then simplified to 6 different extents. ANSYS software was used to simulate the seismic response of the connection models. All the models predicted the fracture of the base metal near the flange-groove weld, but the potential of rupture decreased as the model simplified. The models were also used to study a fully-welded connection, and predicted the potential of fracture to be much lower than the compatible BWWF connection. The effects of strength difference were further evaluated for the beam web and flanges. The result shows that if the web plate had greater strength, ignoring the strength variation would underestimate the potential of fracture. That also implies that if web plates had relatively lower strength, the potential of fracture would reduce, especially for BWWF connections.
TABLE OF CONTENT

摘要 i
EXTENDED ABSTRACT ii
ACKNOWLEDGMENT vii
TABLE OF CONTENT viii
LIST OF FIGURES x
LIST OF TABLES xii
NOMENCLATURE xiii
CHAPTER ONE INTRODUCTION 1
1.1 Background 1
1.2 Research Objective 3
1.3 Thesis Organization. 3
CHAPTER TWO LITERATURE REVIEW 5
2.1 Finite element method and ANSYS 5
2.2 Steel Moment Connections 6
2.3 FEM Simulation of Connection Tests 11
CHAPTER THREE FINITE ELEMENT ANALYSIS 19
3.1 Introduction to ANSYS 19
3.2 FEM Simulation And Meshing 21
3.2.1 Connection Model 21
3.2.3 Material Nonlinearity 25
3.2.4 Boundary Conditions 27
3.2.5 FEM Meshing 28
3.3 Validation By Test Data 30
3.3.1 Von-Mises Stress 31
3.3.2 PEEQ 32
3.4 Rupture Index 34
CHAPTER FOUR CASE STUDY ANALYSIS 38
4.1 Introduction 38
4.2 Effects of Connection Modeling 39
4.2.1 Modeling of Bolted-web Connections 39
4.3 Effects Evaluation 41
4.3.1 Moment-drift relationship 41
4.3.2 Distribution of von Mises Stress 43
4.3.3 Rupture Index (RI) at 4% drift 46
4.4 Effects of strength variation 48
CHAPTER FIVE CONCLUSIONS 57
5.1 Summary and Conclusion 57
5.2 Suggestions for future work 58
REFERENCES 59
APPENDIX 62
REFERENCES

1.Chen, X. and G. Shi, Cyclic tests on high strength steel flange-plate beam-to-column joints. Engineering Structures, 2019. 186: p. 564-581.
2.Berkeley seismological laboratory. Real-Time Interactive Earthquake Map. 2020 [cited 2020 30 april]; Available from: http://seismo.berkeley.edu/seismo.real.time.map.html.
3.Ching-Yu Yeh, Seismic Design and Tests of Bolted Shear-Tab Connections and Steel Moment Connections (Master Thesis), in Civil engineering 2019, National Cheng Kung University: Tainan, Taiwan. p. 141.
4.Chen, X. and Y. Liu, Finite element modeling and simulation with ANSYS Workbench. 2014: CRC press.
5.Chen, C.-C. and C.-C. Lin, Seismic performance of steel beam-to-column moment connections with tapered beam flanges. Engineering structures, 2013. 48: p. 588-601.
6.Mehrabian, A., T. Ali, and A. Haldar, Nonlinear analysis of a steel frame. Nonlinear Analysis: Theory, Methods & Applications, 2009. 71(12): p. e616-e623.
7.Tsai, K.-C., S. Wu, and E.P. Popov, Experimental performance of seismic steel beam-column moment joints. Journal of Structural Engineering, 1995. 121(6): p. 925-931.
8.Engelhardt, M.D., et al., The dogbone connection: Part II. Modern Steel Construction, 1996. 36(8): p. 46-55.
9.Engelhardt, M.D. and T.A. Sabol, Reinforcing of steel moment connections with cover plates; benefits and limitations. Engineering Structures, 1998. Vol. 20, Nos 4-6, pp. 510-520.
10.Chou, C.C., et al., Seismic rehabilitation performance of steel side plate moment connections. Earthquake Engineering & Structural Dynamics, 2010. 39(1): p. 23-44.
11.ElSabbagh, A., et al., Behavior of extended end-plate bolted connections subjected to monotonic and cyclic loads. Engineering Structures, 2019. 190: p. 142-159.
12.Balan, A. and M. George, Prediction of Behaviour of Steel Beam-Column Joint with Pretensioned Bolt Connectors. IJISET-International Journal of Innovative Science, Engineering & Teechnology, 2018. 5(4 April 2018).
13.Abdalla, K.M., G.A. Drosopoulos, and G.E. Stavroulakis, Failure Behavior of a Top and Seat Angle Bolted Steel Connection with Double Web Angles. Journal of Structural Engineering, 2015. 141(7).
14.Mao, C., et al., Effect of local details on ductility of welded moment connections. Journal of Structural engineering, 2001. 127(9): p. 1036-1044.
15.Kumar, S.S. and D.P. Rao, RHS beam-to-column connection with web opening—experimental study and finite element modelling. Journal of Constructional Steel Research, 2006. 62(8): p. 739-746.
16.Zhang, X., S. Zheng, and X. Zhao, Seismic performance of steel beam-to-column moment connections with different structural forms. Journal of Constructional Steel Research, 2019. 158: p. 130-142.
17.Kim, N.H., B.V. Sankar, and A.V. Kumar, Introduction to finite element analysis and design. 2018: John Wiley & Sons.
18.AIJ, Recommendations for design of connections in steel structures. 2012: Tokyo, Japan (in Japanese).
19.Jiayu, C., C.-M. Lai, and H.-Y. Chang, Design and Analysis Verification of Shear Plate Bolt Joints of Steel Beam and Column Joint (In Chinese), in Civil engineering. 2017, National cheng kung university: Tainan.
20.Lee, H.-H., Finite Element Simulations with ANSYS Workbench 19. 2019.
21.Boresi, A.P., R.J. Schmidt, and O.M. Sidebottom, Advanced mechanics of materials. Vol. 6. 1985: Wiley New York et al.
22.El-Tawil, S., T. Mikesell, and S.K. Kunnath, Effect of local details and yield ratio on behavior of FR steel connections. Journal of structural engineering, 2000. ASCE 126(1): 79-87.
23.Hu, F., et al., Seismic performance of prefabricated steel beam-to-column connections. Journal of Constructional Steel Research, 2014. 102: p. 204-216.
24.Engelhardt, M.D. and T.A. Sabol, Reinforcing of steel moment connections with cover plates: benefits and limitations. Engineering structures, 1998. 20(4-6): p. 510-520.
25.Al Kajbaf, A., N. Fanaie, and K.F. Najarkolaie, Numerical simulation of failure in steel posttensioned connections under cyclic loading. Engineering Failure Analysis, 2018. 91: p. 35-57.
26.Chen, C.-C., C.J. Salim, and R. Tiara, Seismic performance of wide flange steel beams partly covered by side plates. Journal of Constructional Steel Research, 2018. 148: p. 275-286.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top