(3.235.245.219) 您好!臺灣時間:2021/05/10 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉欣雨
研究生(外文):Hsin-YuLiu
論文名稱:離岸風機結構與土壤互制之探討
論文名稱(外文):Study on Offshore Wind Turbine Support Structures with Soil-structure Interaction
指導教授:朱聖浩
指導教授(外文):Shen-Haw Ju
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:120
中文關鍵詞:土壤互制液化不同尺寸離岸風機套管式離岸風機支撐結構設計用鋼量
外文關鍵詞:Soil-structure interactionLiquefactionMultiple scale offshore wind turbineJacket-type support structureTotal design steel weights
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了因應不同的狀況,需要提供不同尺寸的風機以供選擇,但目前開放且具有詳細尺寸資訊的僅有NREL的5MW及DTU的10MW兩種尺寸的風力發電機,為了能夠針對其他尺寸進行分析及探討,此論文中利用內插的方式尋找出每一種規模下,風機支撐結構最適當的尺寸。在以往WindTurb程式中的土壤模型較適合做靜力分析,為了更加符合動態分析,因此參考Boulanger et al. (1999)所提出的公式進行調整,在調整後,分析不同尺寸的風力發電機,在規範 IEC 61400-3-1: 2019所建議的設計載重案例下,需要的用鋼量、控制的案例及其原因,其中包含不同的風、浪和台灣常發生的地震及颱風。台灣位於地震頻繁的區域,因此對於地震所引發的液化需要做進一步的探討,本文以實驗證實液化的影響,並提出兩種方式折減液化後的土壤勁度,比較兩種方式對風力發電機整體用鋼量的差異及影響。電腦輔助分析程式由 朱聖浩教授研究團隊所開發,分析程式與研究成果皆為公開資源。
For the various situations of wind farms, it is necessary to provide wind turbines of different sizes for selection, but currently only two wind turbines of 5MW NREL and 10MW DTU are available with detailed size information. In order to analyze and discuss other sizes, this thesis uses interpolation to find the most appropriate size of the wind turbine support structure for each scale. In the past, the soil model in the WindTurb program is more suitable for static analysis. In order to be more in line with the dynamic analysis, the formula proposed by Boulanger et al. (1999) is used for adjustment. After adjustment, analyze the steel consumption, control cases and reasons of different size wind turbines under the design load case recommended by the specification IEC 61400-3-1: 2019. The controlled conditions include different winds, waves, and earthquakes and typhoons that often occur in Taiwan. Taiwan is located in an area where earthquakes are frequent, so the liquefaction caused by the earthquake needs to be further discussed. This thesis confirms the effect of liquefaction through the experiment. In terms of numerical simulation, two methods are proposed to reduce soil stiffness after liquefaction, and compare their differences and influences on the amount of steel used for the entire wind turbine. Note that the computer programs developed by the research team of Shen-Haw Ju are open and free to use.
摘要 I
Abstract II
Acknowledgement III
List of Tables VI
List of Figures VIII
Chapter 1 Introduction 1
1.1 Background and purpose 1
1.2 Literature review 2
1.2.1 Study of the seismic load 2
1.2.2 Study of wind and typhoon load 5
1.2.3 Study of the soil and liquefaction under seismic load 7
1.2.4 Different scales of the wind turbines 9
1.3 Overview 10
Chapter 2 Soil-structure Interaction 11
2.1 P-y, t-z and q-z theory in API 11
2.2 Theory of p-y, t-z and q-z under dynamic load model 17
2.3 Introduction of p-y curve 18
2.3.1 Elastic-plastic spring 18
2.3.2 Closure spring 20
2.3.3 Drag spring 21
2.4 Introduction of t-z curve 22
2.5 Introduction of q-z curve 23
2.6 Simple method for analyzing liquefaction 24
Chapter 3 Experiment 25
3.1 Introduction of the experiment 25
3.2 Analysis of experimental data 28
3.2.1 Soil in the bottom structure 28
3.2.2 Result 35
Chapter 4 The Programs and Cases 37
4.1 Soil-structure interaction 37
4.1.1 P-y, q-z, t-z curve 37
4.1.2 Examples of liquefaction methods introduced in section 2.6 43
4.2 Program integration 45
4.2.1 Support structure model definition 48
4.2.2 Parameters for controlling dimensions 49
4.2.3 Material properties for soil 53
Chapter 5 Case Study and Result Discussion 57
5.1 Structure 57
5.2 Design load cases (DLC) 58
5.3 Result 68
5.3.1 The amount of steel used by OWT 68
5.3.2 Control cases 70
5.4 Discussion of the situation when the water depth is 25m 96
5.4.1 Structure 96
5.4.2 The amount of steel used by OWT 96
Chapter 6 Primary Study of OWT Support Structure Behavior under Soil Liquefaction 98
6.1 Finite element formulation with soil liquefaction 98
6.2 Procedures of proposed finite element analyses 100
6.2.1 Detailed theoretical process 100
6.2.2 Program flow 102
6.3 Case study 110
Chapter 7 Conclusions 112
7.1 Conclusions 112
7.2 Future works 114
References 115
Abdelkader, A., Aly, A. M., Rezaee, M., Bitsuamlak, G. T., & El Naggar, M. H. (2017). On the evaluation of wind loads for wind turbines’ foundation design: Experimental and numerical investigations. The Structural Design of Tall and Special Buildings, 26(9), e1362
Abhinav, K. A., & Saha, N. (2018). Nonlinear dynamical behaviour of jacket supported offshore wind turbines in loose sand. Marine Structures, 57, 133–151.
Alati, N., Failla, G., & Arena, F. (2015). Seismic analysis of offshore wind turbines on bottom-fixed support structures. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2035), 20140086–20140086.
Amirinia, G., & Jung, S. (2017). Buffeting response analysis of offshore wind turbines subjected to hurricanes. Ocean Engineering, 141, 1–11.
API RECOMMENDED PRACTICE 2A-WSD. (2002) Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Working Stress Design
Asareh, M.-A., Schonberg, W., & Volz, J. (2016). Fragility analysis of a 5-MW NREL wind turbine considering aero-elastic and seismic interaction using finite element method. Finite Elements in Analysis and Design, 120, 57–67.
Bisoi, S., & Haldar, S. (2014). Dynamic analysis of offshore wind turbine in clay considering soil–monopile–tower interaction. Soil Dynamics and Earthquake Engineering, 63, 19–35.
Boulanger, R. W., Curras, C. J., Kutter, B. L., Wilson, D. W., & Abghari, A. (1999). Seismic Soil-Pile-Structure Interaction Experiments and Analyses. Journal of Geotechnical and Geoenvironmental Engineering, 125(9), 750–759.
Cox, K., & Echtermeyer, A. (2012). Structural Design and Analysis of a 10MW Wind Turbine Blade. Energy Procedia, 24, 194–201.
Desmond, C., Murphy, J., Blonk, L., & Haans, W. (2016). Description of an 8 MW reference wind turbine. Journal of Physics: Conference Series, 753, 092013.
DNVGL: DNVGL-ST-0126. (2016) Support structures for wind turbines
Esfeh, P. K., & Kaynia, A. M. (2019). Numerical modeling of liquefaction and its impact on anchor piles for floating offshore structures. Soil Dynamics and Earthquake Engineering, 127, 105839.
FAO, Soil Permeability. In FAO Training Series – Soil. Web site: ftp://ftp.fao.org/FI/CDrom/FAO_Training/FAO_Training/General/x6706e/x6706e09.htm. Cited on June 13th, 2013.
Hallowell, S., & Myers, A. T. (2016). Site-specific variability of load extremes of offshore wind turbines exposed to hurricane risk and breaking waves. Wind Energy, 20(1), 143–157.
IBC. International Building Code 2006; International Code Council: Birmingham, AL, USA, 2006.
Idriss I, Sun JL. SHAKE91––a computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits, Center for Geotechnical Modeling. University of California at Davis; 1992. CA.
IEC61400-1, 2019, Wind energy generation systems - Part 1: Design requirements, ed. 4, International Electrotechnical Commission.
IEC61400-3-1, 2019, Wind energy generation systems - Part 3-1: Design requirements for fixed offshore wind turbines, ed. 1, International Electrotechnical Commission.
International Electrotechnical Commission (IEC), IEC 61400-3-1 Ed.1: Wind energy generation systems – Part 3-1: Design requirements for fixed offshore wind turbines
Ishihara, K. (1993). Liquefaction and flow failure during earthquakes. Géotechnique, 43(3), 351–451.
Ju, S.-H., & Huang, Y.-C. (2019). Analyses of offshore wind turbine structures with soil-structure interaction under earthquakes. Ocean Engineering, 187, 106190.
Ju, S. H., & Hung, S. J. (2019). Derailment of a train moving on bridge during earthquake considering soil liquefaction. Soil Dynamics and Earthquake Engineering, 123, 185–192.
Kaynia, A. M. (2018). Seismic considerations in design of offshore wind turbines. Soil Dynamics and Earthquake Engineering.
Kim, N., & Jin, J. W. (2013). Sensitivity analysis of offshore wind turbine tower caused by the external force. KSCE Journal of Civil Engineering, 17(5), 859–864.
Li, Y., Castro, A. M., Sinokrot, T., Prescott, W., & Carrica, P. M. (2015). Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence. Renewable Energy, 76, 338–361.
Liu, Y., Li, S., Chan, P. W., & Chen, D. (2018). Empirical Correction Ratio and Scale Factor to Project the Extreme Wind Speed Profile for Offshore Wind Energy Exploitation. IEEE Transactions on Sustainable Energy, 9(3), 1030–1040.
Mardfekri, M., & Gardoni, P. (2014). Multi-hazard reliability assessment of offshore wind turbines. Wind Energy, 18(8), 1433–1450.
Morgan, E. C., Lackner, M., Vogel, R. M., & Baise, L. G. (2011). Probability distributions for offshore wind speeds. Energy Conversion and Management, 52(1), 15–26.
Mosher, R. L., (1984). Load Transfer Criteria for Numerical Analysis of Axially Loaded Piles in Sand. U. S. Army Waterways Experiment Station, Automatic Data Processing Center, Vicksburg, Mississippi.
Rose, S., Jaramillo, P., Small, M. J., Grossmann, I., & Apt, J. (2012). Quantifying the hurricane risk to offshore wind turbines. Proceedings of the National Academy of Sciences, 109(9), 3247–3252.
Santangelo, F., Failla, G., Arena, F., & Ruzzo, C. (2017). On time-domain uncoupled analyses for offshore wind turbines under seismic loads. Bulletin of Earthquake Engineering, 16(2), 1007–1040.
Santangelo, F., Failla, G., Arena, F., & Ruzzo, C. (2017). Seismic uncoupled analyses for offshore wind turbines . IET Renewable Power Generation, 11(9), 1100–1112.
Seong, J.-T., Ha, J.-G., Kim, J.-H., Park, H.-J., & Kim, D.-S. (2017). Centrifuge modeling to evaluate natural frequency and seismic behavior of offshore wind turbine considering SFSI. Wind Energy, 20(10), 1787–1800.
Seong, J., & Kim, D. (2019). Seismic evaluation of offshore wind turbine by geotechnical centrifuge test. Wind Energy.
Shi, W., Park, H. C., Chung, C. W., Shin, H. K., Kim, S. H., Lee, S. S., & Kim, C. W. (2015). Soil-structure interaction on the response of jacket-type offshore wind turbine. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 139–148.
Simon, J. (2013). Parameter identification for dynamic analysis of pile foundation using nonlinear p-y method. Second Conference of Junior Researchers in Civil Engineering
Van der Male, P., van Dalen, K. N., & Metrikine, A. V. (2016). The effect of the nonlinear velocity and history dependencies of the aerodynamic force on the dynamic response of a rotating wind turbine blade. Journal of Sound and Vibration, 383, 191–209.
Vijayvergiya, V. N., Cheng, A. P., & Kolk, H. J. (1977). Effect of soil set up on pile driveability in chalk. Journal of the geotechnical engineering division-asce, 103(10), 1069-1082.
Wang, H., Barthelmie, R. J., Pryor, S. C., & Kim, H. G. (2013). A new turbulence model for offshore wind turbine standards. Wind Energy, 17(10), 1587–1604.
Wang, J., Qin, S., Jin, S., & Wu, J. (2015). Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources. Renewable and Sustainable Energy Reviews, 42, 26–42.
Wei, K., Arwade, S. R., Myers, A. T., Valamanesh, V., & Pang, W. (2016). Effect of wind and wave directionality on the structural performance of non-operational offshore wind turbines supported by jackets during hurricanes. Wind Energy, 20(2), 289–303.
Worsnop, R. P., Lundquist, J. K., Bryan, G. H., Damiani, R., & Musial, W. (2017). Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards. Geophysical Research Letters, 44(12), 6413–6420.
Wu, W. H., Prendergast, L. J., & Gavin, K. (2018). An iterative method to infer distributed mass and stiffness profiles for use in reference dynamic beam-Winkler models of foundation piles from frequency response functions. Journal of Sound and Vibration, 431, 1–19.
Yang, J., & Sato, T., & Li, X. S. (2000). Seismic amplification at a soft soil site with liquefiable layer. Journal of earthquake engineering. 4(1), 1-23
Yang, Y., Bashir, M., Li, C., & Wang, J. (2019). Analysis of seismic behaviour of an offshore wind turbine with a flexible foundation. Ocean Engineering, 178, 215–228.
Yang, Y., Li, C., Bashir, M., Wang, J., & Yang, C. (2019). Investigation on the sensitivity of flexible foundation models of an offshore wind turbine under earthquake loadings. Engineering Structures, 183, 756–769.
Yu, H., Zeng, X., Li, B., & Lian, J. (2015). Centrifuge modeling of offshore wind foundations under earthquake loading. Soil Dynamics and Earthquake Engineering, 77, 402–415.
Zuo, H., Bi, K., & Hao, H. (2018). Dynamic analyses of operating offshore wind turbines including soil-structure interaction. Engineering Structures, 157, 42–62.
Zuo, H., Bi, K., Hao, H., & Li, C. (2019). Influence of earthquake ground motion modelling on the dynamic responses of offshore wind turbines. Soil Dynamics and Earthquake Engineering, 121, 151–167.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔