(3.238.96.184) 您好!臺灣時間:2021/05/10 09:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴崇恩
研究生(外文):Chung-EnTai
論文名稱:應用中空扭剪試驗探討液化後顆粒性土壤殘餘強度
論文名稱(外文):A Study on the Post-liquefaction Residual Strength of Sandy Soils using a Hollow Cylinder Apparatus
指導教授:張文忠張文忠引用關係
指導教授(外文):Wen-Jong Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:118
中文關鍵詞:中空扭剪液化後殘餘強度液化試驗液化阻抗
外文關鍵詞:Hollow cylinder apparatusPost liquefaction residual strengthLiquefaction testLiquefaction resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:20
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
砂土液化後之不排水殘餘強度為進行液化土層之穩定性分析與設計時之重要參數,本研究採用不同相對密度之渥太華砂與不同細粒料含量之麥寮砂試驗,以K0中空扭剪系統,在相同壓密應力下,先將試體以動態之正弦波反覆剪應力進行剪動,當試體之超額孔隙水壓比達到1.0時視為液化,接著以剪動速率2%/min進行靜態之單向剪動,求取不同相對密度下之液化後不排水殘餘強度。研究結果顯示,在單向剪動前期,隨著剪應變越大,超額孔隙水壓比會持續維持在1.0且初始剪力模數遠小於液化前初始剪力模數;然而在單向剪動之中後期,超額孔隙水壓比會隨著剪應變增大而減少,且剪力阻抗增加,故定義當超額孔隙水壓比開始下降時之剪應變所對應之剪應力為液化後之殘餘強度。實驗結果顯示,液化後之殘餘強度,在不同的初始相對密度下會趨近相同且殘餘強度會隨著細粒料含量的上升而下降。
Post liquefaction residual strength of sand is an important parameter for the stability analysis and design of the liquefied soil layer. In this study, a K0 hollow cylinder apparatus was used to measure the post liquefaction residual strength of sandy soil. Clean Ottawa sand specimens with different relative densities after consolidated and Mai-Liao sand (MLS) specimens with different fine contents were tested. The water pluviation technique was used to prepare remolded specimens under the same effective consolidated stress. All specimens were sheared using sinusodial shear stress to excited the excess pore water pressure ratio to reaches 1.0 and this state is defined as the initial liquefaction. Following the initial liquefaction, the specimens were then monotonically sheared at a constant strain rate of 2%/min to investigate the post liquefaction residual strength of sandy soil. The results show that in the beginning of monotonic shearing, the excess pore water pressure ratio maintained at 1.0. In the following stages of the monotonic shearing, the excess pore water pressure ratio decreased with increasing shear strain. Therefore, this study defines the shear stress corresponding to the shear strain where the excess pore water pressure ratio begins to be less than 1.0 as the post liquefaction residual strength. The results show that the post liquefaction residual strength is independent of initial relative densitieswith a residual strength ratio of 0.21. Furthermore, the residual strength ratio of MLS will decrease from 0.26 to 0.21 as the fines content increase from 0 to 35%.
摘要 i
EXTENDED ABSTRACT ii
致謝 x
目錄 xi
表目錄 xvi
圖目錄 xvii
第一章 緒論 1
1-1. 研究背景與動機 1
1-2. 研究方法與流程 1
1-3. 論文架構 3
第二章 文獻回顧 4
2-1土壤中空扭剪系統發展 4
2-1-1 Hight et al. (1983) HCA 研究 5
2-1-2 Tatsuoka et al. (1986) HCA 研究 8
2-2 HCA剪應力與剪應變計算 10
2-2-1 HCA剪應力計算 10
2-2-2 HCA剪應變計算 11
2-3 土壤液化 12
2-3-1 液化種類 12
2-3-2 液化判定準則 13
2-3-3 液化阻抗比(Cyclic resistance ratio, CRR) 13
2-4 液化後之殘餘強度 14
2-4-1 液化後殘餘強度試驗回顧 14
2-4-2 液化後殘餘強度之評估方法 19
2-4-3 液化後殘餘強度之影響因子 21
2-4-3-1 土壤組成 22
2-4-3-2 細粒料含量 24
2-4-3-3 有效圍壓 26
2-4-3-4 試體準備方法 28
第三章 試驗儀器 30
3-1 Ko壓密中空扭剪系統架構 30
3-2 外部構件 32
3-2-1剪力支架 32
3-2-2頂蓋 33
3-2-3 底座 34
3-2-4 剪力盒 34
3-3 壓力控制系統 35
3-4 垂直荷重與水平扭剪子系統 36
3-4-1 垂直荷重子系統 36
3-4-1-1 伺服馬達 37
3-4-1-2 電壓缸與油壓缸 38
3-4-2 水平扭剪子系統 39
3-5 自動控制子系統 39
3-5-1 PID控制邏輯 40
3-5-2 感測器訊號擷取卡 41
3-5-3 馬達控制軸卡 41
3-5-4 Labview 程式撰寫 42
3-6 傳感器率定 43
3-6-1 荷重元率定 43
3-6-2 扭力計率定 44
3-6-3 垂直向位移傳感器率定 46
3-6-4 壓力傳感器率定 47
第四章 試驗內容與系統驗證 49
4-1 試驗規劃 49
4-2 試驗材料之基本物理性質 49
4-2-1 渥太華砂(Ottawa sand)基本物理性質 49
4-2-2 麥寮砂基本物理性質 50
4-3 試驗流程 51
4-3-1 試驗材料準備 51
4-3-2 試體架設 52
4-3-3 試體飽和 54
4-3-4 試體壓密 55
4-3-5 試體剪動 55
4-3-5-1 液化 55
4-3-5-2 不排水單向剪動 56
4-4 系統驗證試驗 56
第五章 試驗結果與分析 58
5-1 K0壓密與液化後乾淨砂不排水剪力強度發展 58
5-2 乾淨砂相對密度對殘餘強度之影響 60
5-2-1 乾淨砂壓密不排水剪動結果 61
5-2-2 乾淨砂液化阻抗比 61
5-2-3 乾淨砂液化後土壤之受剪行為 63
5-2-4 乾淨砂液化後殘餘強度 68
5-2-5 乾淨砂液化後剪脹狀態之強度發展 70
5-2-6 乾淨砂液化後強度折減因子 74
5-3 細料含量對土壤殘餘強度之影響 76
5-3-1 麥寮砂壓密不排水剪動結果 77
5-3-2 麥寮砂液化阻抗比 77
5-3-3 麥寮砂液化後土壤之受剪行為 79
5-3-4 麥寮砂液化後殘餘強度 84
5-3-5 麥寮砂液化後剪脹狀態之強度發展 86
5-3-6 麥寮砂強度折減因子 90
5-4 不同土壤組成對液化殘餘強度之影響 91
第六章 結論與建議 93
6-1 結論 93
6-2 建議 94
參考文獻 95
附錄 98
張嘉偉 (1997) 圓錐貫入試驗在粉砂中之標定,國立交通大學土木工程學系,碩士論文。
陳昱愷 (2018) 應用中空扭剪試驗探討剪應變速率對土壤動態特性之影響,國立成功大學土木工程學系,碩士論文。
龍麒安 (2019) 以中空扭剪探討近斷層加載下砂土液化行為,國立成功大學土木工程學系,碩士論文。
Ampadu, S., & Tatsuoka, F. (1993). A Hollow Cylinder Torsional Simple Shear Apparatus Capable of a Wide Range of Shear Strain Measurement. Geotechnical Testing Journal, 16(1), 3-17.
Chang, W.-J., Chang, C.-W., & Zeng, J.-K. (2014). Liquefaction Characteristics of Gap-graded Gravelly Soils in K0 Condition. Soil Dynamics and Earthquake Engineering, 56, 74-85.
Hight, D. W., Gens, A., & Symes, M. J. (1983). The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils. Géotechnique, 33(4), 355-383.
Idriss, I. M., & Boulanger, R. W. (2007). SPT- and CPT-Based Relationships for The Residual Shear Strength of Liquefied Soils., Earthquake Geotechnical Engineering: 4th International Conference on Earthquake Geotechnical Engineering-Invited Lectures, 1-22.
Ishihara, K., & Li, S.-i. (1972). Liquefaction of Saturated Sand in Triaxial Torsion Shear Test. Soils and Foundations, 12(2), 19-39.
Iwasaki, T., Tatsuoka, F., & Takagi, Y. (1978). Shear Moduli of Sands under Cyclic Torsional Shear Loading. Soils and Foundations, 18(1), 39-56
Iwasaki, T., Arakawa, T., & Tokida, K.-I. (1984). Simplified procedures for assessing soil liquefaction during earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, 3(1), 49-58.
Kokusho, T., Hara, T., & Hiraoka, R. (2004). Undrained Shear Strength of Granular Soils with Different Particle Gradations. Journal of Geotechnical and Geoenvironmental Engineering, 130(6), 621-629.
Naeini, S. A., & Baziar, M. H. (2004). Effect of fines content on steady-state strength of mixed and layered samples of a sand. Soil Dynamics and Earthquake Engineering, 24(3), 181-187.
Poulos, S., Castro, G., & France, J. (1985). Liquefaction Evaluation Procedure. Journal of Geotechnical Engineering, 111, 772-792.
Saada, A. S. (1988). State-of-the-Art Paper: Hollow Cylinder Torsional Devices: Their Advantages and Limitations. R. T. Donaghe, R. C. Chaney, & M. L. Silver (Eds.), 766-789. West Conshohocken, ASTM International.
Seed, H. B. (1979). Considerations in the earthquake-resistant design of earth and rockfill dams. Géotechnique, 29(3), 215-263.
Seed, H. B., Martin, P. P., & Lysmer, J. (1975). The Generation and Dissipation of Pore Water Pressures During Soil Liquefaction: College of Engineering, University of California.
Sivathayalan, S., & Yazdi, A. (2004). Post liquefaction response of initially strain softening sand. 215-221.
Tatsuoka, F., Sonoda, S., Hara, K., Fukushima, S., & Pradhan, T. B. S. (1986). Failure and Deformation of Sand in Torsional Shear. Soils and Foundations, 26(4), 79-97.
Vaid, Y., Sivathayalan, S., & Stedman, D. (1999). Influence of Specimen-Reconstituting Method on the Undrained Response of Sand. Geotechnical Testing Journal, 22(3), 187-195.
Vaid, Y. P., & Sivathayalan, S. (1996). Static and cyclic liquefaction potential of Fraser Delta sand in simple shear and triaxial tests. Canadian Geotechnical Journal, 33(2), 281-289.
Yasuda, S., Yoshida, N., Adachi, K., Kiku, H., Gose, S., & Masuda, T. (1999). A Simplified Practical Method for Evaluating Liquefaction-Induced Flow. Doboku Gakkai Ronbunshu, 638, 71-89.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔