(3.238.96.184) 您好!臺灣時間:2021/05/08 22:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:巴沙梅
研究生(外文):Sarah HumairohBahri
論文名稱:彈性基鈑無碴軌道之振動特性
論文名稱(外文):The Vibration Characteristics of Ballastless Track with Elastic Baseplate
指導教授:郭振銘
指導教授(外文):Chen-Ming Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:52
外文關鍵詞:VibrationTrain-InducedNatural FrequencyElastic Base Plate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Since the advent of railways, the specifications of the track system have been modified considerably. The ability of the system to absorb and reduce vibration is one of the concerns that is the main focus on the track system. Understanding the characteristics of vibrations is a decent preliminary approach to controlling the exist vibrations. In-situ experiment has been conducted on the Er Cheng Hang River Bridge. In this study, the train-induced vibration and natural frequency of the system are being examine. An One Third Octave Band-Fast Fourier transform (FFT) method is used to analyse the measurement results. The results show there are two prominent frequencies of each train caused by very likely the induction of train speed. The 63 Hz found as the natural frequency of the bridge and this peak is validated by the analysis of vibration before it totally disappears. It was also found 100 Hz and 630 Hz are the natural frequencies of the track system and it is validated by conducting the instrumented sledgehammer test. The Elastic Base Plate indicate to reduce the vibration around 30 – 40 dB.
CONTENTS
ABSTRACT II
DEDICATION III
ACKNOWLEDGEMENTS IV
CONTENTS V
LIST OF TABLES VII
LIST OF FIGURES VIII
1 CHAPTER ONE INTRODUCTION 1
1.1 Background 1
1.2 Research Objective. 2
1.3 Thesis Organization. 2
2 CHAPTER TWO LITERATURE REVIEW 3
2.1 Literature Review of Prior Studies 3
2.1.1 Track Vibration 3
2.1.2 Train Induced Vibration 4
2.2 Signal Process Method 7
2.2.1 Fast Fourier Transform (FFT) 7
2.2.2 One – Third Octave Band (1/3 Octave Band) 8
3 CHAPTER THREE RESEARCH METHODOLOGY 11
3.1 Research Methodology 11
3.2 Experimental Equipment 12
3.2.1 Instrument Sledgehammer 12
3.2.2 Accelerometer 13
3.2.3 NI-9234 Analog Input Acquisition Module (Data Acquisition, DAQ) 14
3.2.4 NI CompactDAQ-9174 Quad Slot USB Chassis 15
3.2.5 Bushnell Radar Speed Gun 17
3.3 Field Test Site 17
3.4 Experiment Configuration 18
3.4.1 Accelerometer Configuration 18
3.4.2 The Instrumented Sledgehammer Test 20
3.4.3 Train – Induced Vibration Test 20
3.5 Field Data Transformation 22
3.5.1 Time Domain Transformation to Frequency Domain 23
3.5.2 One-Third Octave Band (⅓ Octave Band) 25
4 CHAPTER FOUR RESULT AND DISCUSSION 28
4.1 Train Induced Vibration 28
4.1.1 Vertical Acceleration - Time History 28
4.1.2 Frequency Response of Each Train 30
4.1.3 Comparison of The Induction Train Frequency Response 32
4.2 Natural Frequency of The Bridge 36
4.3 Validate The Vibration of Track System 45
4.4 Elastic Baseplate 47
5 CHAPTER FIVE CONCLUSION AND SUGGESTION 49
5.1 Conclusion 49
5.2 Suggestion 50
REFERENCES 51
REFERENCES
Bian, X., Jiang, H., Chang, C., Hu, J., &Chen, Y. (2015). Track and ground vibrations generated by high-speed train running on ballastless railway with excitation of vertical track irregularities. Soil Dynamics and Earthquake Engineering, 76, 29–43. https://doi.org/10.1016/j.soildyn.2015.02.009
Chen, R. J. T., Wang, T., Chang, K., &Chang, S. (n.d.). Taiwan Trackwork Development-Nonballast Track System-.
Degrande, G., Schevenels, M., Chatterjee, P., Van deVelde, W., Hölscher, P., Hopman, V., Wang, A., &Dadkah, N. (2006). Vibrations due to a test train at variable speeds in a deep bored tunnel embedded in London clay. Journal of Sound and Vibration, 293(3–5), 626–644. https://doi.org/10.1016/j.jsv.2005.08.039
Ju, S. H., Lin, H. T., &Chen, T. K. (2007). Studying characteristics of train-induced ground vibrations adjacent to an elevated railway by field experiments. Journal of Geotechnical and Geoenvironmental Engineering, 133(10), 1302–1307. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1302)
Melke, J., &Kramer, S. (1983). Diagnostic methods in the control of railway noise and vibration. Journal of Sound and Vibration, 87(2), 377–386. https://doi.org/10.1016/0022-460X(83)90577-1
Ono, K., &Yamada, M. (1989). Analysis of railway track vibration. Sound and Vibration, 130(2), 269–297.
Yang, N., Guo, T., &Sun, G. Z. (2013). Train-induced vibration on elevated railway station. Journal of Central South University, 20(12), 3745–3753.
https://doi.org/10.1007/s11771-013-1903-2
Zhang, X., Li, X., Song, L., Su, B., &Li, Y. (2016). Vibrational and acoustical performance of concrete box-section bridges subjected to train wheel-rail excitation: Field test and numerical analysis. Noise Control Engineering Journal, 64(2), 217–229. https://doi.org/10.3397/1/376373
Pyrgidis, C. (2016). Railway Transportation Systems. Boca Raton: CRC Press, https://doi.org/10.1201/b19472
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔