(35.175.212.130) 您好!臺灣時間:2021/05/15 10:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李喬茵
研究生(外文):Chiao-YinLi
論文名稱:縮尺模型樁受震時之樁土互制反應
論文名稱(外文):Pile-Soil Interaction of Scaled Model Piles Subjected to Seismic Loading
指導教授:倪勝火倪勝火引用關係柯永彥
指導教授(外文):Sheng-Huoo NiYung-Yen Ko
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:146
中文關鍵詞:基樁p-y 曲線土壤液化超額孔隙水壓比振動台試驗
外文關鍵詞:pilep-y curvesoil liquefactionexcess pore water pressure ratioshaking table test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣位於環太平洋地震帶,且離岸風機所處的海床多屬飽和砂土層,海床土壤受震後易導致土壤液化,為探討於不同液化程度下之樁-土互制行為,本研究利用以國家地震中心之大型振動台與大型雙軸向柔性邊界剪力試驗盒所進行之套筒式基礎離岸風機縮尺模型振動台試驗,分析樁身加速規、應變計以及土壤中水壓計、加速規之量測資料,以展現樁土受震時之動態變化。
本研究選用其中三組地震試驗進行分析,基於溫克梁(Winkler beam)理論,利用樁身應變計求得彎矩,並採用四次多項式,經由最小平方法及適當之邊界條件對樁身彎矩進行擬合,得出樁身彎矩分佈函數,對此函數進行微分兩次得到土壤反力,積分兩次得到基樁位移,再將框架上位移計視為土壤位移,基樁位移與土壤位移之差值為樁土相對變位,如此則可繪製出土壤由液化前至液化後之p-y曲線,並求出不同超額孔隙水壓比下之地盤反力係數,以探討土層隨超額孔隙水壓比程度上升,而逐漸軟化之行為。
Taiwan is located in Circum-Pacific Seismic Belt, and the seabed where offshore wind turbines are installed is mostly composed of saturated sandy soil, which is liquefiable during earthquakes. To investigate the pile-soil interaction of offshore wind turbines at different levels of liquefaction, results of shaking table tests of a scale-model offshore wind turbine with jacket foundation were utilized., which were performed using the large shaking table and large bi-axial laminar shear box of National Center for Earthquake Engineering. In order to exhibit the variation of dynamic behavior of pile and soil during excitation, the data of mini-accelerometers and strain gauges placed on the pile surface and the piezometers in the soil which can be used to monitor pore water pressure were analyzed. Three of the seismic loading tests were examined. On the basis of Winkler beam theory, the bending moment can be obtained through the strain gauges on the pile. The distribution function of the bending moment curve of the pile body in the form of 4th order polynomials was obtained by the least square method and by setting proper boundary conditions. During the analysis, soil resistance(p) can be obtained by twice differentiating the bending moment curve, whereas the pile deflection(yp) involves twice integrating the moment curves. In addition, the measurement of the displacement transducers on the movable frames of the laminar shear box can be treated as the soil displacement(ys). The difference between yp and ys is the relative displacement of pile and soil(y). Thus, the p-y curve of the soil before and after liquefaction can be obtained, and the coefficients of subgrade reaction can be calculated at different excess pore water pressure ratios.
摘要............................................................................................................. I
Extended Abstract .......................................................................................III
致謝............................................................................................................ IX
目錄............................................................................................................ XI
圖目錄........................................................................................................XV
表目錄.................................................................................................... XXIII
第一章 緒論.................................................................................................. 1
1.1 研究背景 ................................................................................................ 1
1.2 研究目的與方法...................................................................................... 2
1.3 論文內容 ..................................................................................,............. 3
第二章 文獻回顧 .......................................................................................... 5
2.1 土壤液化 ................................................................................................ 5
2.1.1 土壤液化定義.............................................................,,,,,,................... 5
2.1.2 液化機制 .........................................................................,,,,,,,,............ 6
2.2 基樁承受側向荷重分析法....................................................................... 8
2.2.1 彈性分析法.......................................................................................... 9
2.2.2 地盤反力分析法............................................................,,,,,,,,,,,,,.........13
2.2.3 p-y 曲線分析法..........................................................,,,,,,,,,,,,.............16
2.2.4 有限元素分析法...........................................................,,,.,,,,,,.............20
2.3 砂土 p-y 曲線....................................................................,,,..................21
2.3.1 Reese (1974)砂土p-y 曲線.........................................,,,,,,,,,,,,,...........21
2.3.2 API 砂土p-y 曲線................................................................................26
2.3.3 Rollins 砂土p-y 曲線......................................................,,,,,,,,,,,,,........28
2.4 超額孔隙水壓之修正法..........................................................................30
2.4.1 超額孔隙水壓力激發之行為................................................................30
2.4.2 Liu 和Dobry 修正法...........................................................,,,,,,,..........31
2.4.3 Chang 和Hutchinson 修正法...........................................,..,,,,,,,.........33
第三章 實驗介紹 ...............................................................................,,,.......37
3.1 實驗說明 .............................................................................................. 37
3.1.1 長衝程高速度地震模擬振動台............................................................37
3.1.2 剪力箱 ..................................................................................,,,,,,.......37
3.1.3 試體設計 ............................................................................................40
3.2 試體說明 ...............................................................................................42
3.2.1 上部結構 ..................................................................................,,,,,,,...45
3.2.2 套筒式水下結構...............................................................,,,,,,,,,,,,.......47
3.2.3 群樁基礎(含地盤) ...................................................................,,,,,,,....48
3.3 感測器之布置..............................................................................,,,,,,....55
3.4 砂土性質 ..........................................................................................,,...59
3.5 輸入運動 .............................................................................,,,...............60
第四章 實驗結果 .........................................................................................63
4.1 FWT-04-N 實驗結果..............................................................................64
4.2 FWT-08-N 實驗結果..............................................................................72
4.3 FWT-16-N 實驗結果..............................................................................80
第五章 結果分析與討論...............................................................................89
5.1 座標方向定義與梁理論..........................................................................89
5.2 樁身彎矩函數之選取..............................................................................90
5.3 迴歸方法 ...............................................................................................91
5.4 分析流程 .......................................................................................,,,,....95
5.5 FWT-04-N 分析結果..............................................................................97
5.6 FWT-08-N 分析結果...................................................................,,...... 111
5.7 FWT-16-N 分析結果................................................................,,,,....... 122
5.8 總整理.................................................................................................133
第六章 結論與建議....................................................................................137
6.1 結論.....................................................................................................137
6.2 建議.....................................................................................................139
參考文獻................................................................................................... 141
莊明仁,「基樁承受側向荷重之反應分析」,國立成功大學土木工程研究所,博士論文 (2001)。
薛朝光,場鑄單∕群樁側向荷載非線性行為之研究,國立海洋大學河海工程學系,博士論文(2004)
黎杰侖,「沖刷樁基承受側向載重之變位分析」,國立成功大學土木工程研究所,碩士論文(2006)。
林昌良,「飽和砂中模型樁之側向載重試驗」,國立台灣大學土木工程學系,碩士論文(2011)
凃亦峻,「位於可液化砂土層中單樁基礎受振反應的離心模擬」,國立中央大學土木工程研究所,碩士論文(2011)。
肖雄,「運用p-y曲線分析基樁在可液化砂土之行為」,國立成功大學土木工程研究所,碩士論文(2014)。
范仲軒,「應用p-y曲線分析離岸風機單樁基礎於可液化海床砂質土壤之行為」,國立成功大學土木工程研究所,碩士論文(2015)。
張書瑜,「p-y曲線應用砂土層離岸風機群樁基礎之行為分析」,國立成功大學土木工程研究所,碩士論文(2016)。
薛惠文,「縮尺比例套筒式基礎離岸風機結構模型振動台實驗研究」,國立成功大學土木工程研究所,碩士論文(2019)。
李宜庭,「液化地盤中群樁基礎縮尺模型振動台試驗」,國立成功大學土木工程研究所,碩士論文(2020)。
國家地震工程研究中心台南實驗室,擷取自地震模擬室: https://www.ncree.org
American Petroleum Institute (API), “Recommended practice for planning, designing, and constructing fixed offshore platforms. API Report No. 2A-WSD, API, Houston. (2005)
American Petroleum Institute (API), “Recommended practice for planning, designing, and constructing fixed offshore platforms. API Report No. 2A-WSD, API, Houston. (2010)
Ashour, M., Norris, G., and Pilling, P., “Lateral loading of a pile in layered soil using the strain wedge model. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 4, pp. 303-315. (1998)
Banerjee, P.K., and Davies, T.G., “The behavior of axially and laterally loaded single piles embedded in non-homogeneous soils. Geotechnique, Vol. 28, No. 3, pp. 309-326. (1978)
Chang, B.J., and Hutchinson, T.C., “Experimental evaluation of p-y curves considering development of liquefaction. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 139, No. 4, pp. 577-586. (2013)
Chen, C.H., Ting, G.C., Chang, W.K., and Hwang, J.H., “Development of a new biaxial shear box for shaking table tests simulating near-fault earthquakes. The 8th Japan-Taiwan Joint Workshop on Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, Kyoto, Japan. (2018)
Douglas, D.J., and Davis, E.H., “The movement of buried footings due to moment and horizontal and movement of anchor plates. Geotechnical Engineering, Vol. 14, No. 2, pp. 115-132. (1964)
De Alba, P., Chan, C.K., and Seed, H.B., “Determination of soil liquefaction characteristics by large-scale laboratory tests. Report No. EERC 75-14, Earthquake Engineering Research Center, University of California at Berkeley. (1975)
Dobry, R., “Liquefaction of Soils During Earthquakes., Report No. CETS-EE-001, National Research Council, Committee on Earthquake Engineering, Washington, DC, USA.(1985)
Hetenyi, M., Beams on Elastic Foundation, University of Michigan. (1946)
Jonkman, J., Butterfield, S., Musial, W., and Scott G., Definition of a 5-MW Reference Wind Turbine for Offshore System Development, National Renewable Energy Laboratory. (2009)
Ko, Y.Y., and Li, Y.T. “Response of a scale-model pile group for a jacket foundation of an offshore wind turbine in liquefiable ground during shaking table tests. Earthquake Engineering and Structural Dynamics. (2020) (accepted. DOI: 10.1002/eqe.3323).
Liu, L., and Dobry, R., “Effect of liquefaction on lateral response of piles by centrifuge model tests. NCEER Bulletin, Vol. 9, No. 1, p. 8. (1995)
Maheshwari, B.K., and Truman, K. Z., “Three-dimensional nonlinear seismic analysis of single piles using finite element model: effects of plasticity of soil. International Journal of Geomechanics, ASCE, Vol. 5, No. 1, pp. 35-44. (2005)
Mindlin, R.D., “Forces at a point in the interior of semi-infinite solid. Physics, Vol. 7, No. 5, pp. 195-202. (1936)
McClelland, B., “Soil modulus for laterally loaded piles. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 82, No. 4, pp. 1-22. (1956)
Mcvay, M., Casper, R., and Shang, T.I., “Lateral response of three-row groups in loose to dense sands at 3D and 5D pile spacing. Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 5, pp. 436-441. (1995)
Mcvay, M., Zhang, L., Molnit, T., and Lai, P., “Centrifuge testing of large laterally loaded pile groups in sands. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 10, pp. 1016-1026. (1998)
Mogami, T., “The behavior of soil during vibration. Proceedings of the 3rd International Conference on Soil Mechanics and Foundations Engineering, Vol. 1, pp. 152-155. (1953)
Matlock, H., and Reese, L.C., “Generalized solution for laterally loaded piles. Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 86, No. SM5, pp. 63-92. (1960)
Maheshwari, B.K., “Three-dimensional nonlinear seismic analysis of single piles using finite element model : Effects of plasticity of soil. International Journal of Geomechanics, ASCE, Vol. 5, No. 1, pp.35-44. (2005)
O’Neill, M.W., and Murchison, J.M., “An evaluation of p-y in sands. Research Report No.GT-DF02-83, Department of Civil Engineering, University of Houston, Houston, Texas. (1983)
Poulos, H.G., “Behavior of laterally loaded piles : I-single pile. Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM5, pp. 711-731. (1971a)
Poulos, H.G., “Behavior of laterally loaded piles : II-group pile. Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM5, pp. 733-751. (1971b)
Poulos, H.G., and Davis, E.N., Pile Foundation Analysis and Design, John Wiley Sons, New York. (1980)
Robertson, P.K., “Suggested terminology for liquefaction. Proceedings of the 47th Canadian Geotechnical Conference, Halifax, Canada, pp. 277-286. (1994)
Reese, L.C., Cox, W., and Koop, F.D., “Analysis of laterally load piles in sand. Proceedings of the 6th Annual Offshore Technology Conference, Houston, Texas, Vol. 2, pp. 473-485. (1974)
Rollins, K.M., Peterson, K.T., and Weaver, T.J., “Lateral load behavior of full-scale pile group in clay. Journal of the Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 6, pp. 468-478. (1998)
Rollins, K.M., Gerber, T.M., Lane, J.D., and Ashford, S.A., “Lateral resistance of a full-scale pile group in liquefied sand. Journal of Geotechnical and Geoenvironmental Engineering, ASCE , Vol. 131, No. 1, pp. 115-125. (2005)
Sladen, J.A., D’hollander, R.D., and Krahn, J., “The liquefaction of sands, a collapse surface approach. Canadian Geotechnical Journal, Vol. 22, No. 4, pp. 564-578. (1985)
Seed, H.B., Martin, P.P., and Lysmer, J., “The generation and dissipation of pore water pressure during soil liquefaction. Report No. EERC 75-26, Earthquake Research Center, University of California, Berkeley, California. (1975)
Seed, H.B., and Idriss, I.M., “Analysis of soil liquefaction : Niigata earthquake. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM3, pp. 83-108. (1967)
Seed, H.B., and Booker, J.R., “Stabilization of potentially liquefiable sand deposits using gravel drains. Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. 7, pp. 757-768. (1977)
Ishihara, K., “Stability of natural deposits during earthquakes. The {11}^{th} International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, Rotterdam, pp. 321-376. (1985)
Ju, S.H., Su, F.C., Ke, Y.P., and Xie, M.H., “Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme. Renewable Energy, Vol. 136, pp. 69-78. (2019)
Winkler, E., Die Lehre Von Elastizitat Und Festigkert ( On Elasticity and Fixity ), Prague. (1867)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top