(3.236.214.19) 您好!臺灣時間:2021/05/07 12:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭家維
研究生(外文):Chia-WeiKuo
論文名稱:超高性能纖維混凝土於RC柱之耐震補強效用
論文名稱(外文):Effectiveness of Ultra-High Performance Fiber-Reinforced Concrete for Retrofitting RC Columns
指導教授:洪崇展
指導教授(外文):Chung-Chan Hung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:239
中文關鍵詞:鋼筋混凝土柱補強剪力強度超高性能纖維混凝土
外文關鍵詞:RC ColumnsRetrofitShear StrengthUHPC Jacketing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
於921大地震後,台灣各界對耐震評估及補強技術投入大量的研究與試驗,隨著技術的發展,各種補強工法及新型營建材料逐漸被應用於結構物補強。本研究以超高性能纖維混凝土(Ultra-High Performance Concrete,簡稱UHPC)作為補強材料,其同時有著高抗壓及抗拉強度,利用該特性可有效縮減補強所需面積,並藉由纖維之橋接效應,有效控制裂縫發展,改善傳統混凝土脆性剝落問題,進而增加構件變形容量及消能容量,提升整體結構物之耐震性能。
本研究以ACI 318-14設計並製作7座縮尺及3座全尺鋼筋混凝土柱,其中包含2座縮尺及1座全尺試體作為控制組,以模擬傳統剪力強度不足或缺乏韌性之鋼筋混凝土柱,並分別設計為剪力及撓剪破壞,其餘試體皆利用超高性能纖維混凝土以不同補強方式進行補強,並透過反覆側推載重下,探討不同軸壓比(0.11、0.33及0.54)、補強層有無鋼筋網及兩種補強方式(場鑄式及預鑄式)之耐震行為。
根據試驗結果與分析顯示,利用UHPC補強之柱構件試體,無論軸壓比大小、是否含鋼筋網或不同之補強工法,均可在維持與原柱相同橫向尺寸的條件下,有效提升整體構件之耐震性能,而其中以UHPC搭配鋼筋網最為顯著,其極限側向強度可提升45%,且韌性亦可提升60%,甚至成功的將柱構件之破壞模式由剪力破壞轉為撓剪破壞。此外,含鋼筋網之UHPC預鑄板補強工法可達到與場鑄補強相似之補強效果,該方法又可簡化施工程序並縮短工期。
Ultra-High Performance Concrete (UHPC) is an innovative construction material. It features ultra-high compressive and tensile strengths in conjunction with crack width control ability. This study aimed to investigate the performance of UHPC jacketing for retrofitting shear-deficient reinforced concrete (RC) columns. A number of non-ductile RC columns were built, retrofitted, and experimentally tested under displacement reversals. The experimental variables included the construction approach (i.e., cast-in-place and precast UHPC jackets), axial demand of the columns, and use of steel mesh. The retrofitted columns were designed to have the same dimensions as the original non-ductile column due to the ultra-high strengths of UHPC. Their seismic performance was experimentally evaluated by tests with pseudo-static displacement reversals. The test results demonstrated that it is effective to apply UHPC jacketing for enhancing the seismic-resistant performance of non-ductile RC columns regardless of the construction method and the use of steel mesh. The failure pattern, strength, stiffness,ductility and load versus displacement characteristics of the original column were enhanced substantially.
摘要 I
誌謝 VI
目錄 VIII
表目錄 XII
圖目錄 XIV
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究方法 2
第二章 文獻回顧 3
2.1 超高性能纖維混凝土 3
2.2 ACI 318-14與ACI 318-19柱構件相關規範 5
2.3 UHPC柱 10
2.4 柱體補強應用 12
2.4.1 擴柱補強 14
2.4.2 預鑄板包覆補強 18
第三章 縮尺RC柱補強試體反覆載重試驗 19
3.1 試驗規劃 19
3.1.1 試驗參數及編號 19
3.1.2 材料性質 20
3.1.3 鋼筋混凝土柱設計 25
3.1.4 補強方法 27
3.2 試體準備 30
3.2.1 鋼筋應變計黏貼 30
3.2.2 上下基礎及柱體施工 32
3.2.3 柱體補強施工 37
3.3 試驗準備 41
3.3.1 裝設系統 41
3.3.2 量測系統 42
3.3.3 施力系統 45
3.4 試驗結果 47
3.4.1 反覆載重試驗 47
3.4.2 遲滯迴圈 93
3.4.3 破壞包絡線 102
3.4.4 韌性比 105
3.4.5 柱體鋼筋應變 107
3.4.6 勁度衰減 110
3.4.7 能量消散 113
3.4.8 柱體之曲率 115
3.4.9 柱體之剪力變形 119
3.4.10 位移組合 124
3.4.11 軸力彎矩互制曲線 127
3.5 小結 128
第四章 全尺RC柱補強試體反覆載重試驗 130
4.1 試驗規劃 130
4.1.1 試驗參數及編號 130
4.1.2 材料性質 131
4.1.3 鋼筋混凝土柱設計 135
4.1.4 補強方法 137
4.2 試體準備 139
4.2.1 鋼筋應變計黏貼 139
4.2.2 上下基礎及柱體施工 140
4.2.3 柱體補強施工 144
4.3 試驗準備 147
4.3.1 裝設系統 147
4.3.2 量測系統 148
4.3.3 施力系統 149
4.4 試驗結果 151
4.4.1 反覆載重試驗 151
4.4.2 遲滯迴圈 170
4.4.3 破壞包絡線 174
4.4.4 韌性比 175
4.4.5 柱體鋼筋應變 177
4.4.6 勁度衰減 179
4.4.7 能量消散 180
4.4.8 柱體之曲率 182
4.4.9 柱體之剪力變形 184
4.4.10 位移組合 186
4.4.11 軸力彎矩互制曲線 187
4.5 小結 188
第五章 綜合討論 190
5.1 初始勁度 190
5.2 補強強度評估 192
5.3 破壞模式分類 193
5.4 鋼板與預鑄板包覆補強 194
第六章 結論與建議 196
6.1 結論 196
6.2 建議 197
參考文獻 199
附錄A 鋼筋應變計 204
[1]Aboukifa, M., Moustafa, M., & Itani, A. (2019). Behavior of UHPC Column Subjected to Combined Axial and Lateral Loading. Paper presented at the International Interactive Symposium on Ultra-High Performance Concrete.
[2]Bermudez, M., & Hung, C.-C. (2019). Shear Behavior of Ultra-High Performance Hybrid Fiber Reinforced Concrete Beams. Paper presented at the International Interactive Symposium on Ultra-High Performance Concrete.
[3]Campione, G., Fossetti, M., Giacchino, C., & Minafò, G. (2014). RC columns externally strengthened with RC jackets. Materials and structures, 47(10), 1715-1728.
[4]Cho, C.-G., Han, B.-C., Lim, S.-C., Morii, N., & Kim, J.-W. (2018). Strengthening of reinforced concrete columns by High-Performance Fiber-Reinforced Cementitious Composite (HPFRC) sprayed mortar with strengthening bars. Composite Structures, 202, 1078-1086.
[5]Deng, M., & Zhang, Y. (2017). Cyclic loading tests of RC columns strengthened with high ductile fiber reinforced concrete jacket. Construction and Building Materials, 153, 986-995.
[6]Deng, M., Zhang, Y., & Li, Q. (2018). Shear strengthening of RC short columns with ECC jacket: Cyclic behavior tests. Engineering Structures, 160, 535-545.
[7]Di Ludovico, M., Verderame, G., Prota, A., Manfredi, G., & Cosenza, E. (2014). Cyclic behavior of nonconforming full-scale RC columns. Journal of Structural Engineering, 140(5), 04013107.
[8]Elbakry, H. M., & Tarabia, A. M. (2016). Factors affecting bond strength of RC column jackets. Alexandria Engineering Journal, 55(1), 57-67.
[9]Elwood, K. J., & Eberhard, M. O. (2009). Effective Stiffness of Reinforced Concrete Columns. ACI Structural Journal, 106(4).
[10]Ghosh, S. K. (2016). Significant changes from the 2011 to the 2014 edition of ACI 318. PCI Journal, 61(2).
[11]Heinz, D., Dehn, F., & Urbonas, L. (2004). Fire resistance of ultra high performance concrete (UHPC)-Testing of laboratory samples and columns under load. Paper presented at the International Symposium on Ultra High Performance Concrete.
[12]Hung, C.-C., & Chueh, C.-Y. (2016). Cyclic behavior of UHPC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, 108-120.
[13]Hung, C.-C., Hu, F.-Y., & Yen, C.-H. (2018). Behavior of slender UHPC columns under eccentric loading. Engineering Structures, 174, 701-711.
[14]Hung, C.-C., Lee, H.-S., & Chan, S. N. (2019). Tension-stiffening effect in steel-reinforced UHPC composites: constitutive model and effects of steel fibers, loading patterns, and rebar sizes. Composites Part B: Engineering, 158, 269-278.
[15]Hung, C.-C., Li, H., & Chen, H.-C. (2017). High-strength steel reinforced squat UHPC shear walls: cyclic behavior and design implications. Engineering Structures, 141, 59-74.
[16]Institute, A. C. (2014). Building Code Requirements for Structural Concrete (ACI 318-14): Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14): an ACI Report: American Concrete Institute. ACI.
[17]Jin, L., Zhang, S., Han, J., Li, D., & Du, X. (2019). Effect of cross-section size on flexural compressive failure of RC columns: Monotonic and cyclic tests. Engineering Structures, 186, 456-470.
[18]Kim, C.-S., Lee, H.-J., Park, C.-K., Hwang, H.-J., & Park, H.-G. (2017). Cyclic loading test for concrete-filled hollow precast concrete columns produced by using a new fabrication method. Journal of Structural Engineering, 143(4), 04016212.
[19]Koo, I.-Y., & Hong, S.-G. (2016). Strengthening RC columns with ultra high performance concrete. Paper presented at the the 2016 structures congress. Magnesium Phosphate Concrete.
[20]Li, B. (2012). Initial stiffness of reinforced concrete columns and walls. Paper presented at the World Conference on Earthquake Engineering, Lisborn.
[21]Li, X., Wang, J., Bao, Y., & Chen, G. (2017). Cyclic behavior of damaged reinforced concrete columns repaired with high-performance fiber-reinforced cementitious composite. Engineering Structures, 136, 26-35.
[22]Malm, R., Ansell, A., Moustafa, F., Sanders, D., Saiidi, M. S., EI-Azazy, S., . . . Kang, H. (2011). Tiong Huan, Md Rafiqul Islam, Md Abul Mansur. ACI Structural Journal, 108.
[23]Ou, Y.-C., Alrasyid, H., Haber, Z. B., & Lee, H.-J. (2015). Cyclic Behavior of Precast High-Strength Reinforced Concrete Columns. ACI Structural Journal, 112(6).
[24]Ou, Y.-C., & Truong, A.-N. (2018). Cyclic behavior of reinforced concrete L-and T-columns retrofitted from rectangular columns. Engineering Structures, 177, 147-159.
[25]Ou, Y.-C., & Truong, A.-N. (2018). Cyclic Shear and Flexural Behavior of L-and T-Columns. ACI Structural Journal, 115(6), 1603-1613.
[26]Park, R. (1989). Evaluation of ductility of structures and structural assemblages from laboratory testing. Bulletin of the new Zealand society for earthquake engineering, 22(3), 155-166.
[27]Pereiro-Barceló, J., Bonet, J. L., Cabañero-Escudero, B., & Martínez-Jaén, B. (2019). Cyclic behavior of hybrid RC columns using High-Performance Fiber-Reinforced Concrete and Ni-Ti SMA bars in critical regions. Composite Structures, 212, 207-219.
[28]Priestley, M. (1997). Displacement-based seismic assessment of reinforced concrete buildings. Journal of earthquake engineering, 1(01), 157-192.
[29]Rajput, A. S., Sharma, U. K., & Engineer, K. (2019). Seismic retrofitting of corroded RC columns using advanced composite materials. Engineering Structures, 181, 35-46.
[30]Realfonzo, R., & Napoli, A. (2009). Cyclic behavior of RC columns strengthened by FRP and steel devices. Journal of Structural Engineering, 135(10), 1164-1176.
[31]Saljoughian, A., & Mostofinejad, D. (2018). Grooving methods in square RC columns strengthened with longitudinal CFRP under cyclic axial compression. Engineering Structures, 174, 724-735.
[32]Shafieifar, M., Farzad, M., & Azizinamini, A. (2018). A comparison of existing analytical methods to predict the flexural capacity of Ultra High Performance Concrete (UHPC) beams. Construction and Building Materials, 172, 10-18.
[33]Soman, M., & Mohan, J. (2018). Rehabilitation of RC columns using ferrocement jacketing. Construction and Building Materials, 181, 156-162.
[34]Vandoros, K. G., & Dritsos, S. E. (2008). Concrete jacket construction detail effectiveness when strengthening RC columns. Construction and Building Materials, 22(3), 264-276.
[35]Wang, D., Huang, L., Yu, T., & Wang, Z. (2017). Seismic performance of CFRP-retrofitted large-scale square RC columns with high axial compression ratios. Journal of Composites for Construction, 21(5), 04017031.
[36]Wang, Z., Wang, J.-Q., Tang, Y.-C., Liu, T.-X., Gao, Y.-F., & Zhang, J. (2018). Seismic behavior of precast segmental UHPC bridge columns with replaceable external cover plates and internal dissipaters. Engineering Structures, 177, 540-555.
[37]Wibowo, A., Wilson, J. L., Lam, N., & Gad, E. (2014). Drift performance of lightly reinforced concrete columns. Engineering Structures, 59, 522-535.
[38]Xu, L., Pan, J., & Chen, J. (2017). Mechanical behavior of ECC and ECC/RC composite columns under reversed cyclic loading. Journal of Materials in Civil Engineering, 29(9), 04017097.
[39]Xu, S., Wu, C., Liu, Z., Han, K., Su, Y., Zhao, J., & Li, J. (2017). Experimental investigation of seismic behavior of ultra-high performance steel fiber reinforced concrete columns. Engineering Structures, 152, 129-148.
[40]Zohrevand, P., & Mirmiran, A. (2012). Cyclic behavior of hybrid columns made of ultra high performance concrete and fiber reinforced polymers. Journal of Composites for Construction, 16(1), 91-99.
[41]최유진. (2018). Shear strengthening of concrete columns by textile reinforced UHPC jacketing. 서울대학교 대학원,
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔