|
Achaoui, Y., Ungureanu, B., Enoch, S., Brûlé, S. and Guenneau, S. (2016) ‘Seismic waves damping with arrays of inertial resonators’, Extreme Mechanics Letters, 8, pp. 30–37. doi: 10.1016/j.eml.2016.02.004. Achaoui, Y., Antonakakis, T., Brûlé, S. Craster, R. V, Enoch, S. and Guenneau, S. (2017) ‘Clamped seismic metamaterials: Ultra-low frequency stop bands’, New Journal of Physics, 19(6). doi: 10.1088/1367-2630/aa6e21. Achenbach, J. (1973) ‘Wave Propagation in Elastic Solids’, North Holland Publishing Company, pp. 30–30. doi: 10.1016/0003-682x(75)90007-9. Achenbach, J. D. (1998) ‘Explicit solutions for carrier waves supporting surface waves and plate waves’, Wave Motion, 28(1), pp. 89–97. doi: 10.1016/S0165-2125(97)00056-5. Boechler, N. et al. (2013) ‘Interaction of a contact resonance of microspheres with surface acoustic waves’, Physical Review Letters, 111(3). doi: 10.1103/PhysRevLett.111.036103. Brûlé, S. Javelaud, E. H., Enoch, S. and Guenneau, S. (2014) ‘Experiments on seismic metamaterials: Molding surface waves’, Physical Review Letters. American Physical Society, 112(13). doi: 10.1103/PhysRevLett.112.133901. Buchwald, V. T. (1961) ‘Rayleigh waves in transversely isotropic media’, Quarterly Journal of Mechanics and Applied Mathematics, 14(3), pp. 293–318. doi: 10.1093/qjmam/14.3.293. Cheadle, S. P., Brown, R. J. andLawton, D. C. (1991) ‘Orthorhombic anisotropy: a physical seismic modeling study’, Geophysics, 56(10), pp. 1603–1613. doi: 10.1190/1.1442971. Chien, T. Y. et al. (2019) ‘A Simple Proposition of Two-Dimensional Configuration of Seismic Metamaterials — A Promising Tool Towards Seismic Cloaking’, Journal of the Chinese Institute of Civil and Hydraulic Engineering, 31(4), pp. 395–410. doi: 10.6652/JoCICHE.201906_31(4).0010. Colombi, A., Roux, P., Guenneau, S., Gueguen, P. and Craster, R. V. (2016) ‘Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances’, Scientific Reports. Nature Publishing Group, 6(January), pp. 1–7. doi: 10.1038/srep19238. Colombi, A., Ageeva, V., Smith, R. J., Clare, A., Patel, R., Clark, M., Colquitt, D., Roux, P., Guenneau, S. and Craster, R. V. (2017) ‘Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces’, Scientific Reports, 7(1). doi: 10.1038/s41598-017-07151-6. Daley, P. F. and Hron, F. (1977) ‘Reflection and transmission coefficients for transversely isotropic media’, Bulletin of the Seismological Society of America, 67(3), pp. 661–675. Du, Q., Zeng, Y., Huang, G. and Yang, H. (2017) ‘Elastic metamaterial-based seismic shield for both Lamb and surface waves’, AIP Advances, 7(7). doi: 10.1063/1.4996716. Graff, K. f. (1975) ‘Wave Motion in Elastic Solids’, Oxford University Press, pp. 71–72. doi: 10.1088/0031-9112/27/1/032. Guo, D.- K., Design and numerical simulation of seismic metamaterials with Love waves in transversely isotorpic media, National Cheng Kung University Civil Engineering Department Master Thesis. He, R.- T., Design and nymerical simulation of seismic metamaterials with Rayleigh waves dispersion effect in a transversely isotropic medium, National Cheng Kung University Civil Engineering Department Master Thesis. Hill, R. (1964) ‘Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour’, Journal of the Mechanics and Physics of Solids, 12(4), pp. 199–212. doi: 10.1016/0022-5096(64)90019-5. Huang, G. L. and Sun, C. T. (2010) ‘Band gaps in a multiresonator acoustic metamaterial’, Journal of Vibration and Acoustics, Transactions of the ASME, 132(3), pp. 0310031–0310036. doi: 10.1115/1.4000784. Huang, H. H. and Sun, C. T. (2009) ‘Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density’, New Journal of Physics, 11. doi: 10.1088/1367-2630/11/1/013003. Huang, H. H. and Sun, C. T. (2011) ‘Locally resonant acoustic metamaterials with 2D anisotropic effective mass density’, Philosophical Magazine. Taylor & Francis, 91(6), pp. 981–996. doi: 10.1080/14786435.2010.536174. Huang, H. H., Sun, C. T. and Huang, G. L. (2009) ‘On the negative effective mass density in acoustic metamaterials’, International Journal of Engineering Science, 47(4), pp. 610–617. doi: 10.1016/j.ijengsci.2008.12.007. Liu, Z., Zhang, X., Mao, Y., Zhu, Y., Yang, Z., Chan, C. T. and Sheng, P. (2000) ‘Locally resonant sonic materials’, Science, 289(5485), pp. 1734–1736. doi: 10.1126/science.289.5485.1734. Manger, E. G. (1963) ‘Porosity and Bulk Density of Sedimentary Rocks’, Geological Survery Bulletin 1144-E, p. 62. Maurel, A., Marigo, J.-J., Pham, K. and Guenneau, S. (2018) ‘Conversion of Love waves in a forest of trees’, Physical Review B, 98(13). doi: 10.1103/PhysRevB.98.134311. Maznev, A. A. and Gusev, V. E. (2015) ‘Waveguiding by a locally resonant metasurface’, Physical Review B - Condensed Matter and Materials Physics, 92(11). doi: 10.1103/PhysRevB.92.115422. Miniaci, M., Krushynska, A., Bosia, F. and Pugno, N. M. (2016) ‘Large scale mechanical metamaterials as seismic shields’, New Journal of Physics. IOP Publishing, 18(8). doi: 10.1088/1367-2630/18/8/083041. Palermo, A., Krödel, S., Marzani, A. and Daraio, C. (2016a) ‘Engineered metabarrier as shield from seismic surface waves’, Scientific Reports. Nature Publishing Group, 6, pp. 1–10. doi: 10.1038/srep39356. Palermo, A., Krödel, S., Marzani, A. and Daraio, C. (2016b) ‘Engineered metabarrier as shield from seismic surface waves’, Scientific Reports, 6, pp. 1–6. doi: 10.1038/srep39356. Palermo, A., Vitali, M. and Marzani, A. (2018) ‘Metabarriers with multi-mass locally resonating units for broad band Rayleigh waves attenuation’, Soil Dynamics and Earthquake Engineering. Elsevier Ltd, 113(March), pp. 265–277. doi: 10.1016/j.soildyn.2018.05.035. Pendry, J. B., Holden, A., Stewart, W. and Youngs, I. (1996) ‘Extremely low frequency plasmons in metallic mesostructures’, Physical Review Letters, 76(25), pp. 4773–4776. doi: 10.1103/PhysRevLett.76.4773. Achaoui, Y., Ungureanu, B., Enoch, S., Brûlé, S. and Guenneau, S. (2016) ‘Seismic waves damping with arrays of inertial resonators’, Extreme Mechanics Letters, 8, pp. 30–37. doi: 10.1016/j.eml.2016.02.004. Achaoui, Y., Antonakakis, T., Brûlé, S. Craster, R. V, Enoch, S. and Guenneau, S. (2017) ‘Clamped seismic metamaterials: Ultra-low frequency stop bands’, New Journal of Physics, 19(6). doi: 10.1088/1367-2630/aa6e21. Achenbach, J. (1973) ‘Wave Propagation in Elastic Solids’, North Holland Publishing Company, pp. 30–30. doi: 10.1016/0003-682x(75)90007-9. Achenbach, J. D. (1998) ‘Explicit solutions for carrier waves supporting surface waves and plate waves’, Wave Motion, 28(1), pp. 89–97. doi: 10.1016/S0165-2125(97)00056-5. Boechler, N. et al. (2013) ‘Interaction of a contact resonance of microspheres with surface acoustic waves’, Physical Review Letters, 111(3). doi: 10.1103/PhysRevLett.111.036103. Brûlé, S. Javelaud, E. H., Enoch, S. and Guenneau, S. (2014) ‘Experiments on seismic metamaterials: Molding surface waves’, Physical Review Letters. American Physical Society, 112(13). doi: 10.1103/PhysRevLett.112.133901. Buchwald, V. T. (1961) ‘Rayleigh waves in transversely isotropic media’, Quarterly Journal of Mechanics and Applied Mathematics, 14(3), pp. 293–318. doi: 10.1093/qjmam/14.3.293. Cheadle, S. P., Brown, R. J. andLawton, D. C. (1991) ‘Orthorhombic anisotropy: a physical seismic modeling study’, Geophysics, 56(10), pp. 1603–1613. doi: 10.1190/1.1442971. Chien, T. Y. et al. (2019) ‘A Simple Proposition of Two-Dimensional Configuration of Seismic Metamaterials — A Promising Tool Towards Seismic Cloaking’, Journal of the Chinese Institute of Civil and Hydraulic Engineering, 31(4), pp. 395–410. doi: 10.6652/JoCICHE.201906_31(4).0010. Colombi, A., Roux, P., Guenneau, S., Gueguen, P. and Craster, R. V. (2016) ‘Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances’, Scientific Reports. Nature Publishing Group, 6(January), pp. 1–7. doi: 10.1038/srep19238. Colombi, A., Ageeva, V., Smith, R. J., Clare, A., Patel, R., Clark, M., Colquitt, D., Roux, P., Guenneau, S. and Craster, R. V. (2017) ‘Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces’, Scientific Reports, 7(1). doi: 10.1038/s41598-017-07151-6. Daley, P. F. and Hron, F. (1977) ‘Reflection and transmission coefficients for transversely isotropic media’, Bulletin of the Seismological Society of America, 67(3), pp. 661–675. Du, Q., Zeng, Y., Huang, G. and Yang, H. (2017) ‘Elastic metamaterial-based seismic shield for both Lamb and surface waves’, AIP Advances, 7(7). doi: 10.1063/1.4996716. Graff, K. f. (1975) ‘Wave Motion in Elastic Solids’, Oxford University Press, pp. 71–72. doi: 10.1088/0031-9112/27/1/032. Guo, D.- K., Design and numerical simulation of seismic metamaterials with Love waves in transversely isotorpic media, National Cheng Kung University Civil Engineering Department Master Thesis. He, R.- T., Design and nymerical simulation of seismic metamaterials with Rayleigh waves dispersion effect in a transversely isotropic medium, National Cheng Kung University Civil Engineering Department Master Thesis. Hill, R. (1964) ‘Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour’, Journal of the Mechanics and Physics of Solids, 12(4), pp. 199–212. doi: 10.1016/0022-5096(64)90019-5. Huang, G. L. and Sun, C. T. (2010) ‘Band gaps in a multiresonator acoustic metamaterial’, Journal of Vibration and Acoustics, Transactions of the ASME, 132(3), pp. 0310031–0310036. doi: 10.1115/1.4000784. Huang, H. H. and Sun, C. T. (2009) ‘Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density’, New Journal of Physics, 11. doi: 10.1088/1367-2630/11/1/013003. Huang, H. H. and Sun, C. T. (2011) ‘Locally resonant acoustic metamaterials with 2D anisotropic effective mass density’, Philosophical Magazine. Taylor & Francis, 91(6), pp. 981–996. doi: 10.1080/14786435.2010.536174. Huang, H. H., Sun, C. T. and Huang, G. L. (2009) ‘On the negative effective mass density in acoustic metamaterials’, International Journal of Engineering Science, 47(4), pp. 610–617. doi: 10.1016/j.ijengsci.2008.12.007. Liu, Z., Zhang, X., Mao, Y., Zhu, Y., Yang, Z., Chan, C. T. and Sheng, P. (2000) ‘Locally resonant sonic materials’, Science, 289(5485), pp. 1734–1736. doi: 10.1126/science.289.5485.1734. Manger, E. G. (1963) ‘Porosity and Bulk Density of Sedimentary Rocks’, Geological Survery Bulletin 1144-E, p. 62. Maurel, A., Marigo, J.-J., Pham, K. and Guenneau, S. (2018) ‘Conversion of Love waves in a forest of trees’, Physical Review B, 98(13). doi: 10.1103/PhysRevB.98.134311. Maznev, A. A. and Gusev, V. E. (2015) ‘Waveguiding by a locally resonant metasurface’, Physical Review B - Condensed Matter and Materials Physics, 92(11). doi: 10.1103/PhysRevB.92.115422. Miniaci, M., Krushynska, A., Bosia, F. and Pugno, N. M. (2016) ‘Large scale mechanical metamaterials as seismic shields’, New Journal of Physics. IOP Publishing, 18(8). doi: 10.1088/1367-2630/18/8/083041. Palermo, A., Krödel, S., Marzani, A. and Daraio, C. (2016a) ‘Engineered metabarrier as shield from seismic surface waves’, Scientific Reports. Nature Publishing Group, 6, pp. 1–10. doi: 10.1038/srep39356. Palermo, A., Krödel, S., Marzani, A. and Daraio, C. (2016b) ‘Engineered metabarrier as shield from seismic surface waves’, Scientific Reports, 6, pp. 1–6. doi: 10.1038/srep39356. Palermo, A., Vitali, M. and Marzani, A. (2018) ‘Metabarriers with multi-mass locally resonating units for broad band Rayleigh waves attenuation’, Soil Dynamics and Earthquake Engineering. Elsevier Ltd, 113(March), pp. 265–277. doi: 10.1016/j.soildyn.2018.05.035. Pendry, J. B., Holden, A., Stewart, W. and Youngs, I. (1996) ‘Extremely low frequency plasmons in metallic mesostructures’, Physical Review Letters, 76(25), pp. 4773–4776. doi: 10.1103/PhysRevLett.76.4773. Pennec, Y., Djafari-Rouhani, B., Larabi, H., Vasseur, J. and Hladky-Hennion, A. C. (2009) ‘Phononic crystals and manipulation of sound’, Physica Status Solidi (C) Current Topics in Solid State Physics, 6(9), pp. 2080–2085. doi: 10.1002/pssc.200881760. Rahman, M. and Barber, J. R. (1995) ‘Exact expressions for the roots of the secular equation for rayleigh waves’, Journal of Applied Mechanics, Transactions ASME, 62(1), pp. 250–252. doi: 10.1115/1.2895917. Rayleigh, L. (1885) ‘On Waves propagated along the Plane Surface of an Elastic Solid’, Scientific Papers, pp. 441–447. doi: 10.1017/cbo9780511703973.053. Rehman, A., Khan, A. and Ali, A. (2006) ‘Rayleigh waves speed in transversely isotropic material’, 54, pp. 323–328. Seth, S. and Michael, W. (2003) ‘Introduction to Seismology, Earthquakes, and Earth Structure’, Oxford: Blackwell Publishing Ltd. doi: 10.1016/0040-1951(74)90136-x. Shanshan, Y., Xiaoming, Z. and Gengkai, H. (2008) ‘Experimental study on negative effective mass in a 1D mass-spring system’, New Journal of Physics. IOP Publishing, 10(4), p. 43020. doi: 10.1088/1367-2630/10/4/043020. Thomsen, L. (1986) ‘Weak elastic anisotropy.’, Geophysics, 51(10), pp. 1954–1966. doi: 10.1190/1.1442051. Tsvankin, I. (2012) ‘Seismic Signatures and Analysis of Reflection Data in Anisotropic Media, Third Edition’, Seismic Signatures and Analysis of Reflection Data in Anisotropic Media, Third Edition. Society of Exploration Geophysicists. doi: 10.1190/1.9781560803003. Veselago, V. G. (1968) ‘the electrodynamics of substances with simultaneously negative values of ε and μ’, Soviet Physics Uspekhi, 10(4), pp. 509–514. doi: 10.1070/pu1968v010n04abeh003699. Watson, L. and VanWijk, K. (2015) ‘Resonant ultrasound spectroscopy of horizontal transversely isotropic samples’, Journal of Geophysical Research: Solid Earth, 120(7), pp. 4887–4897. doi: 10.1002/2014JB011839.
|