(3.238.96.184) 您好!臺灣時間:2021/05/08 04:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝志忠
研究生(外文):Jhy-JongShie
論文名稱:地震超材料對於震波能量衰減行為的探討
論文名稱(外文):Wave attenuation of seismic metamaterials:Analytical and numerical simulation of layer thickness effects
指導教授:陳東陽陳東陽引用關係
指導教授(外文):Tungyang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:137
中文關鍵詞:地震超材料等效材料參數局部共振帶隙
外文關鍵詞:seismic metamaterialsband gapwave attenuation mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:28
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
地震超材料,藉由震波於特定頻率下對超材料之單元結構造成局部共振現象,進而達到消能的效果,此具有特殊的減震方式,使得近年來有眾多學者投入該領域的研究與探索,而本文著重分析超材料厚度對於波傳的影響,首先介紹超材料消能的機制與改變材料設計的條件控制帶隙範圍大小,以提高超材料的使用範圍。接著推導波在不同超材料厚度與入射波頻率下消能效果的影響,透過在半無限域中中間放置一超材料夾層觀察波進入與出超材料後振幅衰減的現象,能夠發現當超材料厚度越厚消能效果越好;在頻率方面,當入射波頻率越高消能的效果也越好。接著再以有限元素軟體設計出與理論模式一樣的模型,並觀察有限元素模擬與推導之理論模式的趨勢是否一致,最後引用實際的超材料與地震力模擬半全域超材料消能可以發現在有限元素模擬之趨勢與理論模式有一致的現象。
In recent years, seismic metamaterials inspired from elastic metamaterials have been used to protect buildings under earthquakes, and their effectiveness in seismic wave attenuation has been verified by experiments on the geophysical scale. In order to design seismic metamaterials that are able to a block a broad band of seismic waves, low frequency and wide bandgap are two main targets for the design of seismic metamaterials. This thesis introduces a wave attenuation mechanism of metamaterials and the material design algorithm to adjust the frequency band gap. Next, with metamaterials of different layer thickness, the influence on wave attenuation and incident wave frequency is assessed. A theoretical solution based on a simple geometric model together with finite element simulations are presented.
中文摘要 i
Abstract iii
誌謝 xi
目錄 xiii
表目錄 xv
圖目錄 xvi
第一章 緒論 1
1.1 文獻回顧與相關研究 1
1.2 研究動機 3
1.3 論文簡介 3
第二章 地震超材料發展與應用 5
2.1 地震波簡介 5
2.2 地震超材料的發展 8
2.3 等效材料參數 16
2.3.1 等效負楊氏模數 18
2.3.2 等效負質量密度 20
2.4 加入地震超材料於集集地震之減震效益評估 29
2.5 地震能量衰減行為受超材料夾層厚度影響 31
第三章 解析推導SH波振幅於超材料夾層影響 37
3.1 超材料夾層厚度與振幅衰減行為解析推導 38
3.2 超材料厚度與頻率關係理論模式數值結果 45
第四章 有限元素模擬SH波振幅衰減於超材料夾層之結果 57
4.1 SH波於半全域消能效果2D頻域模擬 57
4.1.1 不同超材料厚度對波消能之影響 60
4.1.2 超材料在不同頻率作用波下消能之影響 62
4.2 SH波於半全域消能效果3D頻域模擬 64
4.2.1 不同超材料厚度對波消能之影響 68
4.2.1 超材料在不同頻率作用波下消能之影響 70
第五章 有限元素模擬其他類型波傳於超材料夾層影響 73
5.1 P波於半全域消能效果有限元素模擬 73
5.1.1 不同超材料厚度對波消能之影響 74
5.1.2 超材料在不同頻率作用波下消能之影響 76
5.2 真實地震作用於超材料不同厚度下模擬比較 78
5.2.1 TCU079測站(頭社國小)半全域地震超材料模擬 80
5.2.2 TCU045測站(獅潭國小)半全域地震超材料模擬 82
第六章 討論與未來展望 85
6.1 結論 85
6.2 未來展望 87
參考文獻 89
附錄A:超材料的局部共振機制 95
附錄B:等效材料參數有限元素模擬 99
附錄C:地震波能量評估 103
附錄D:司乃耳定律 107
附錄E:真實地震反應之地震超材料減震效益 113
附錄F:COMSOL建模 127
Achenbach, J., Wave propagation in elastic solids, North-Holland Pub. Co., (1973).

Bloch, F. Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift Für Physik 52: 555-600, (1929).

Brûlé, S., Enoch, S. and Guenneau, S. Emergence of seismic metamaterials: Current state and future perspectives. Physics Letters A 384:126034, (2020).

Brûlé, S., Javelaud, E. H., Enoch, S. and Guenneau, S. Experiments on seismic metamaterials: molding surface waves. Phys Rev Lett 112: 133901, (2014).

Brûlé, S., Javelaud, E. H., Enoch, S. and Guenneau, S. Flat lens effect on seismic waves propagation in the subsoil. Sci Rep 7: 18066, (2017).

Colombi, A., Roux, P., Guenneau, S., Gueguen, P. and Craster, R. V. Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Sci Rep 6: 19238, (2016).

Earle, S., Physical geology, British Columbia, (2018).

Fang, N., Xi, D. J., Xu, J. Y., Ambati, M., Srituravanich, W., Sun, C. and Zhang, X. Ultrasonic metamaterials with negative modulus. Nature Materials 5: 452-456, (2006).

Gusev, V. E. and Wright, O. B. Double-negative flexural acoustic metamaterial. New Journal of Physics 16: 123053, (2014).

Hewage, T. A., Alderson, K. L., Alderson, A. and Scarpa, F. Double‐Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative Poisson's Ratio Properties. Advanced Materials 28: 10323-10332, (2016).

Huang, H. and Sun, C. A study of band-gap phenomena of two locally resonant acoustic metamaterials. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 224: 83-92, (2010).

Huang, H. and Sun, C. Theoretical investigation of the behavior of an acoustic metamaterial with extreme Young's modulus. Journal of the Mechanics and Physics of Solids 59: 2070-2081, (2011).

Huang, H., Sun, C. and Huang, G. On the negative effective mass density in acoustic metamaterials. International Journal of Engineering Science 47: 610-617, (2009).

Huang, H. H. and Sun, C. T. Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young's modulus. Journal of the Acoustical Society of America 132: 2887-2895, (2012).

Huang, H. H. and Sun, C. T. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New Journal of Physics 11: 013003, (2009).

John, S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters 58: 2486, (1987).

Kim, S. H. and Das, M. P. Artificial seismic shadow zone by acoustic metamaterials. Modern Physics Letters B 27, (2013).

Kim, S. H. and Das, M. P. Seismic Negative Belt of Acoustic Metamaterials. Modern Physics Letters B, (2017).

Kim, S. H. and Das, M. P. Seismic waveguide of metamaterials. Modern Physics Letters B 26, (2012).

Kushwaha, M. S., Halevi, P., Dobrzynski, L. and Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Physical Review Letters 71: 2022, (1993).

Lai, Y., Wu, Y., Sheng, P. and Zhang, Z. Q. Hybrid elastic solids. Nature Materials 10: 620-624, (2011).

Liu, X.-N., Hu, G.-K., Huang, G.-L. and Sun, C.-T. An elastic metamaterial with simultaneously negative mass density and bulk modulus. Applied Physics Letters 98: 251907, (2011).

Liu, Y., Su, X. and Sun, C. Broadband elastic metamaterial with single negativity by mimicking lattice systems. Journal of the Mechanics and Physics of Solids 74: 158-174, (2015).

Liu, Z. Y., Zhang, X. X., Mao, Y. W., Zhu, Y. Y., Yang, Z. Y., Chan, C. T. and Sheng, P. Locally resonant sonic materials. Science 289: 1734-1736, (2000).

Ma, G. and Sheng, P. Acoustic metamaterials: From local resonances to broad horizons. Science Advances 2: e1501595, (2016).

Maleki, M. and Khodakarami, M. Feasibility analysis of using metasoil scatterers on the attenuation of seismic amplification in a site with triangular hill due to SV-waves. Soil Dynamics and Earthquake Engineering 100: 169-182, (2017).

Meseguer, F., Holgado, M., Caballero, D., Benaches, N., Sanchez-Dehesa, J., López, C. and Llinares, J. Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal. Physical Review B 59: 12169, (1999).

Milton, G. W., Briane, M. and Willis, J. R. On cloaking for elasticity and physical equations with a transformation invariant form. New Journal of Physics 8, (2006).

Mu, D., Shu, H., Zhao, L. and An, S. A Review of Research on Seismic Metamaterials. Advanced Engineering Materials 22:1901148, (2020).

Ouchi, T., Lin, A., Chen, A. and Maruyam, T. The 1999 Chi-Chi (Taiwan) earthquake: earthquake fault and strong motions. Bulletin of the Seismological Society of America 91: 966-976, (2001).

Pendry, J. B. Negative refraction makes a perfect lens. Physical Review Letters 85: 3966-3969, (2000).

Pendry, J. B., Holden, A. J., Robbins, D. J. and Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Engineering in Medicine and Biology Magazine 47: 2075-2084, (1999).

Pendry, J. B., Holden, A. J., Stewart, W. J. and Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters 76: 4773-4776, (1996).

Richard, F., Woods, R. and Hall Jr, J. Vibration of Soils and Foundations. (1970).

Shelby, R. A., Smith, D. R. and Schultz, S. Experimental verification of a negative index of refraction. Science 292: 77-79, (2001).

Sheng, P., Mei, J., Liu, Z. and Wen, W. Dynamic mass density and acoustic metamaterials. Physica B: Condensed Matter 394: 256-261, (2007).

Sigalas, M. M. and Economou, E. N. Elastic and acoustic wave band structure. Journal of Sound and Vibration 158: 377-382, (1992).

Smith, D. R., Padilla, W. J., Vier, D., Nemat-Nasser, S. C. and Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters 84: 4184, (2000).

Udías, A., Principles of Seismology, Press syndicate of the university of cambidge, (2000).

Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ϵ and μ. Physics Uspekhi 10: 509-514, (1968).

Wang, Y. S. and Yu, G. L. Transmission of SH waves through an elastic layer between two solids with frictional contact interfaces. Journal of Applied Mechanics-Transactions of the ASME 66: 729-737, (1999).

Weiland, T., Schuhmann, R., Greegor, R., Parazzoli, C., Vetter, A., Smith, D., . . . Schultz, S. Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments. Journal of Applied Physics 90: 5419-5424, (2001).

Wu, Y., Lai, Y. and Zhang, Z. Q. Effective medium theory for elastic metamaterials in two dimensions. Physical Review B 76, (2007).

Wu, Y., Lai, Y. and Zhang, Z. Q. Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Physical Review Letters 107: 105506, (2011).

Wu, Y., Li, J., Zhang, Z. Q. and Chan, C. T. Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit. Physical Review B 74, (2006).

Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters 58: 2059, (1987).

Zigoneanu, L., Popa, B.-I. and Cummer, S. A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nature Materials 13: 352-355, (2014).

吳逸軒、汪向榮、張國鎮、陳東陽. 多類型複合地震超結構之寬頻帶設計與分析. 中國土木水利工程學刊 31:Start Page: 103-118, (2019)。

呂孟學,具波傳導向機制之彈性超穎介面分析與設計,國立成功大學土木所碩士論文, (2019)。

李冠慧,地震超材料設計之減震模擬及效益評估,國立成功大學土木所碩士論文, (2019)。

國家地震工程研究中心. 地震災害造成電力中斷之經濟影響評估.Start Page, (1999)。

簡廷宇、黃瑜琛、吳逸軒、李冠慧、翁崇寧、陳東陽. 新型態外部隔減震技術-地震超材料之設計與分析. 中國土木水利工程學刊 31:Start Page: 395-410, (2019)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔