|
[1]T. Huang, 機器/統計學習:主成分分析(Principal Component Analysis, PCA), Medium, 2018, Retrieved from https://medium.com/@chih.sheng.huang821/%E6%A9%9F%E5%99%A8-%E7%B5%B1%E8%A8%88%E5%AD%B8%E7%BF%92-%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90-principle-component-analysis-pca-58229cd26e71. [2]U. R. Acharya, H. Fujita, O. S. Lih, Y. Hagiwara, J. H. Tan, and M. Adam, Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network, Information Sciences, Vol. 405, 2017, pp. 81-90. [3]E. Alickovic, and A. Subasi, Medical Decision Support System for Diagnosis of Heart Arrhythmia using DWT and Random Forests Classifier, Journal of Medical Systems, Vol. 40, 2016, p. 108. [4]N. M. Arzeno, Z.-D. Deng, and C.-S. Poon, Analysis of First-Derivative Based QRS Detection Algorithms, IEEE Transactions on Biomedical Engineering, Vol. 55, 2008, pp. 478-484. [5]J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer Normalization, stat, Vol. 1050, 2016, p. 21. [6]L. Boltzmann, Weitere studien über das wärmegleichgewicht unter gasmolekülen, Springer, 1970. [7]L. Cuiwei, Z. Chongxun, and T. Changfeng, Detection of ECG characteristic points using wavelet transforms, IEEE Transactions on Biomedical Engineering, Vol. 42, 1995, pp. 21-28. [8]The danger of “silent heart attacks, Harvard Health Publishing, 2019, Retrieved from https://www.health.harvard.edu/heart-health/the-danger-of-silent-heart-attacks. [9]U. Desai, R. J. Martis, C. G. Nayak, K. Sarika, and G. Seshikala, Machine intelligent diagnosis of ECG for arrhythmia classification using DWT, ICA and SVM techniques, Annual IEEE India Conference (INDICON), India, 2015. [10]H. Feldman, A Guide to Reading and Understanding the EKG, Columbia University, 1999, Retrieved from http://www.columbia.edu/~ss45/EKG-2.PDF. [11]X. Glorot, and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the thirteenth international conference on artificial intelligence and statistics, 2010, pp. 249-256. [12]A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, et al., PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals, Circulation, Vol. 101, 2000, pp. e215-e220. [13]A. Habib, C. Karmakar, and J. Yearwood, Impact of ECG Dataset Diversity on Generalization of CNN Model for Detecting QRS Complex, IEEE Access, Vol. 7, 2019, pp. 93275-93285. [14]P. S. Hamilton, and W. J. Tompkins, Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database, IEEE Transactions on Biomedical Engineering, Vol. BME-33, 1986, pp. 1157-1165. [15]K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026-1034. [16]G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, arXiv preprint arXiv:1207.0580, 2012. [17]H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of educational psychology, Vol. 24, 1933, pp. 498-520. [18]J. S. Huang, B. Q. Chen, B. Yao, and W. P. He, ECG Arrhythmia Classification Using STFT-Based Spectrogram and Convolutional Neural Network, IEEE Access, Vol. 7, 2019, pp. 92871-92880. [19]IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, 2008, pp. 1-70. [20]S. Ioffe, and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:1502.03167, 2015. [21]S. Jayaraman, V. Sangareddi, R. Periyasamy, J. Joseph, and R. M. Shanmugam, Modified limb lead ECG system effects on electrocardiographic wave amplitudes and frontal plane axis in sinus rhythm subjects, Anatolian journal of cardiology, 2016. [22]T. J. Jun, H. M. Nguyen, D. Kang, D. Kim, D. Kim, and Y.-H. Kim, ECG arrhythmia classification using a 2-D convolutional neural network, ArXiv, Vol. abs/1804.06812, 2018. [23]V. Kalidas, and L. Tamil, Real-time QRS detector using Stationary Wavelet Transform for Automated ECG Analysis, IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE), 2017, pp. 457-461. [24]R. E. Klabunde, Cardiovascular Physiology Concepts, Cvphysiology, 2016, Retrieved from https://www.cvphysiology.com/Arrhythmias/A006. [25]J. L. Lagrange, Mécanique analytique, Mallet-Bachelier, 1853. [26]J. Malmivuo, and R. Plonsey, Bioelectromagnetism. 15. 12-Lead ECG System, Oxford University Press, 1975. [27]J. P. Martínez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, A wavelet-based ECG delineator: evaluation on standard databases, IEEE Transactions on Biomedical Engineering, Vol. 51, 2004, pp. 570-581. [28]G. B. Moody, and R. G. Mark, The impact of the MIT-BIH Arrhythmia Database, IEEE Engineering in Medicine and Biology Magazine, Vol. 20, 2001, pp. 45-50. [29]S. Nattel, and L. Carlsson, Innovative approaches to anti-arrhythmic drug therapy, Nature Reviews Drug Discovery, Vol. 5, 2006, pp. 1034-1049. [30]T. Nguyen, X. Qin, A. Dinh, and F. Bui, Low Resource Complexity R-peak Detection Based on Triangle Template Matching and Moving Average Filter, Sensors, Vol. 19, 2019, p. 3997. [31]J. Pan, and W. J. Tompkins, A real-time QRS detection algorithm, IEEE Trans. Biomed. Eng, Vol. 32, 1985, pp. 230-236. [32]N. Patchett, File: Limb leads of EKG.png, Wikimedia Commons, the free media repository, 2016, Retrieved from https://commons.wikimedia.org/w/index.php?title=File:Limb_leads_of_EKG.png&oldid=218319987. [33]K. Pearson, LIII. On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 2, 1901, pp. 559-572. [34]E. Roth, and B. Wu, 24-Hour Holter Monitoring, Healthline, 2017, Retrieved from https://www.healthline.com/health/holter-monitor-24h. [35]P. Sasikala, and R. Wahidabanu, Robust r peak and qrs detection in electrocardiogram using wavelet transform, International Journal of Advanced Computer Science and Applications-IJACSA, Vol. 1, 2010, pp. 48-53. [36]S. Shadmand, and B. Mashoufi, A new personalized ECG signal classification algorithm using Block-based Neural Network and Particle Swarm Optimization, Biomedical Signal Processing and Control, Vol. 25, 2016, pp. 12-23. [37]C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, Vol. 27, 1948, pp. 379-423. [38]M. E. Silverman, and J. Willis Hurst, Willem einthoven-the father of electrocardiography, Clinical Cardiology, Vol. 15, 1992, pp. 785-787. [39]K. Simonyan, and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014. [40]J. Smith, 30-Year-Old Man Training for First Marathon Says Apple Watch Saved His Life, Runner's World, 2019, Retrieved from https://www.runnersworld.com/runners-stories/a28337843/apple-watch-ecg-saves-mans-life/. [41]WHO, The top 10 causes of death, World Health Organization, 2018, Retrieved from https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. [42]S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, Understanding data augmentation for classification: when to warp?, International conference on digital image computing: techniques and applications (DICTA), 2016, pp. 1-6. [43]Y. Xiang, Z. Lin, and J. Meng, Automatic QRS complex detection using two-level convolutional neural network, BioMedical Engineering OnLine, Vol. 17, 2018. [44]H. Yang, M. Huang, Z. Cai, Y. Yao, and C. Liu, A Faster R CNN-based Real-time QRS Detector, COMPUTING IN CARDIOLOGY, 2019. [45]Ö. Yıldırım, P. Pławiak, R.-S. Tan, and U. R. Acharya, Arrhythmia detection using deep convolutional neural network with long duration ECG signals, Computers in Biology and Medicine, Vol. 102, 2018, pp. 411-420. [46]W. Zhu, X. Chen, Y. Wang, and L. Wang, Arrhythmia Recognition and Classification Using ECG Morphology and Segment Feature Analysis, IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 16, 2019, pp. 131-138. [47]M. Zubair, J. Kim, and C. Yoon, An Automated ECG Beat Classification System Using Convolutional Neural Networks, 6th International Conference on IT Convergence and Security (ICITCS), 2016.
|