(34.237.52.11) 您好!臺灣時間:2021/05/18 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:龔意婷
研究生(外文):Yi-TingGong
論文名稱:表面張力於流體自組裝之研究
論文名稱(外文):Research of Surface Tension on Fluidic Self-assembly
指導教授:周榮華周榮華引用關係
指導教授(外文):Jung-Hua Chou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩士在職專班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:51
中文關鍵詞:流體自組裝表面張力Micro LED
外文關鍵詞:Fluidic Self-AssemblySurface TensionMicro LED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:55
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  隨著LED顯示器技術的進步,世代由大面板小元件的趨勢發展著,Mini LED及Micro LED的大面板世代來臨,經調查研究機構在2018年的預測,未來一旦Micro LED 取代現有顯示器而躍居為市場主流,潛在市場規模約可達300~400億美元,為此,各界趨之若鶩。在關鍵技術開發上,除了LED本身的製程技術外,LED不斷微小化也使得其定位、移載以及組裝技術備受挑戰。傳統的機械取放方式(Pick an place)逐漸不敷使用。為了達到產能,開始朝著有機會使移載方式達到「面」為單位的元件自組裝技術方向發展,「巨量轉移技術」也成了面板發展技術中的重中之重。為克服微小化元件的定位及組裝成本問題,以流體做為微小元件移動的載體或是助力的流體自組裝 (Fluidic Self-Assemble,FSA)應用成了其中之一。
  本研究利用其元件在流體表面的自組裝特性,將表面張力作為研究主軸,探討表面張力對縮短元件自組裝時間的影響。本研究將文獻所指的相對穩定條件延伸,找出縮短時間的助力的條件,也就是表面張力所產生的推或吸力。實驗規劃由尋找推力量測方法為起點,進而規劃不同實驗條件,彙整結果以計算驗證表面張力及元件自組裝的關係。實驗分為兩大主軸執行,第一部分是分析測試元件在液面漂移的狀態下,其受表面張力影響所產生的位移與時間關係,進而了解其表面張力與元件加速度的關係;第二部分藉由施力以外力來觀察元件的位移現象,找出施力距離與表面張力的關係。
  由研究所知,微小元件於流體表面進行自組裝時,可利用表面張力的推力與吸力配合施力的距離來使元件加速移動,縮短自組裝的時間。
  With the advances in LED display technology, the trend toward large panels and small components is evident. Large panels with Mini LEDs and Micro LEDs are emerging. According to the prediction of research institutions in 2018, once Micro LEDs replace the existing displays, they will become the mainstream of the market, with a potential market size of approximately US$30-40 billion. Thus, they have attracted attentions from many research and development sectors. In the development of key technologies, in addition to the process technology of the LED itself, the continuous miniaturization of the LED also makes its positioning, transfer and assembly technology a great challenge. The traditional mechanical pick and place method (Pick and place) is becoming inadequate. In order to achieve production capacity, the industry has begun to develop mass transfer technology to cope with the need. The mass transfer technology is also the top priority in the panel technology. In order to overcome the problems of positioning and assembly cost of miniaturized components, fluidic self-assembly (FSA), which uses fluid as a carrier for the movement of small components, is a viable approach of the mass transfer technology.
  This research examines the self-assembly characteristics of the components on the water surface, taking surface tension as the main driving force. This study extends the results of the relatively stable conditions mentioned in the literature to further find out the possibility of shortening the assembly time under the conditions of using pulling or pushing force by an external guide rod. The experiments begun with the search for the force measurement method for determining the force involved in the assembly process.
  The experimental results show that the components accelerate quickly when the distance between the components is shorter. The acceleration is not constant and varies as the distance between the components changes. On the other hand, both push and pulling can speed up the assembly process. Namely, it is feasible to use the force created by surface tension to match the distance of the applied force to achieve the moving acceleration of the components to be assembled to speed up the self-assembly process by reducing the time needed to move the components closer to each other for assembly.
摘要 I
Extended Abstract II
誌謝 IX
目錄 X
表目錄 XIII
圖目錄 XIV
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.2.1 Micro LED介紹 2
1.2.2 巨量轉移技術介紹 4
1.2.3 巨量轉移技術瓶頸 5
1.3 文獻回顧 6
1.4 論文架構 15
第2章 基礎理論 16
2.1 流體自組裝介紹 16
2.2 表面張力及接觸角 17
第3章 研究方法與模擬設置 18
3.1 研究方法與模擬規劃 18
3.2 實驗設備 18
3.2.1 實驗用液槽 18
3.2.2 ES-103HA 精密電子式天平 19
3.3 實驗材料 20
3.3.1 疏水性元件 20
3.3.2 力感測元件 21
3.3.3 導引棒 21
3.3.4 攝影器材 22
3.4 流體自組裝現象觀察步驟 22
3.4.1 不同容器與不同元件的自組裝時間 22
3.4.2 元件自組裝的速度變化 23
3.5 力感測元件 24
3.5.1 力感測元件的材料特性 25
3.5.2 力感測元件的選擇 26
3.6 外力的距離對流體自組裝的影響觀察步驟 27
3.6.1 不同導引棒在不同距離下的表面張力 27
3.7 施予外力的自組裝時間觀察步驟 29
第4章 結果與討論 30
4.1 自由狀態下,無外力的流體自組裝現象 30
4.1.1 不同容器與不同元件的自組裝時間 30
4.1.2 相近的自組裝加速發生位置 31
4.1.3 元件自組裝的速度分析 32
4.2 力感測元件 37
4.2.1 力感測線的材料特性 37
4.2.2 不同線徑的力感測線材(A線)變形量差異 40
4.3 外力的距離對流體自組裝的影響 42
4.3.1 不同導引棒在不同距離下的推力關係 42
4.3.2 相同導引棒在不同距離下的推力關係 44
4.4 有無外力與表面張力的影響 44
4.5 施予外力的自組裝時間 45
第5章 結論與建議 47
5.1 結論 47
5.2 建議 48
參考文獻 49
[1] https://technews.tw/2020/07/02/mini-led-and-micro-led/ , Accessed June.2020
[2] https://www.ledinside.com.tw/news/20160603-32567.html, Accessed July.2020
[3] https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=13450, Accessed July.2020
[4] R.S. Fearing, Survey of sticking effects for micro parts handling, in Proc.IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Pittsburg, Pa, pp. 212-217, 1995.
[5] Yu-Hong Lin , Relation between Guide Force and Self-Assembly by Surface Tension, Mater Thesis, Department of Engineering Science, National Cheng Kung University, July 2016
[6] https://technews.tw/2016/09/22/micro-led-ledinside-forum-2016/, Accessed July 2020
[7] https://www.ledinside.com.tw/news/20200630-36793.html , Accessed July 2020
[8]https://www.tipo.gov.tw/tw/dl-19449-d3a59aaa72584b61968318d023f8e9d2.html, Accessed, July 2020
[9] https://technews.tw/2020/06/27/lcd-oled-qled-qd-oled-mini-led-micro-led-are-silly-and-unclear-i-will-show-you-what-the-panel-industry-is-doing-3/,Accessed, July 2020
[10]圖1.1, https://www.ledinside.com.tw/news/20200701-36796.html. Accessed July 2020
[11] https://www.2cm.com.tw/2cm/zh-tw/tech/84397D44C6B04354A7F2B5E5BE282416
, Accessed July 2020
[12] https://www.materialsnet.com.tw/DocView.aspx?id=37997 , Accessed July 2020
[13] Kai Ding, Vitaliy Avrutin, Natalia Izyumskaya, Ümit Özgür and Hadis Morkoç, Micro-LEDs, a Manufacturability Perspective, Appl. Sci. (MDPI) vol.9, 1206, 2019
[14] Matthew A. Meitl, Zheng-Tao Zhu, Vipan Kumar, Keon Jae Lee, Xue Feng,Yonggang Y. Huang, Ilesanmi Adesida, Ralph G. Nuzzo, and John A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp, Nature Materials,vol. 5, 33–38 , 2006
[15] Chia Liang Hsu, Study of Control Mechanism for Fluidic Self-Assembly, PME Micro Device Laboratory, National Tsing Hua University, July 2005
[16] Se-Chul Park, Jun Fang, Shantonu Biswas, Mahsa Mozafari, Thomas Stauden, and Heiko O. Jacobs, Approaching Roll-to-Roll Fluidic Self-Assembly: Relevant Parameters, Machine Design and Applications , IEEE Journal of Microelectromechanical Systems, Vol. 24, No. 6, Dec. 2015
[17] A.K. Verma, M.A. Hadley, H.J. Yeh, and J. S. Smith, Fluidic Self-Assembly of Silicon Microstructures, in IEEE 1995 Proceedings. 45th Electronic Components and Technology Conference, May. 1995.
[18] Kenji Sasaki,Paul J. Schuele,Kurt Ulmer,Jong-Jan Lee, “System and Method for the Fluidic Assembly of Emissive Displays, U.S. Patent No. US 2017/0133558 A1, May. 2017
[19] U. Srinivasan, D. Liepmann, and R. T. Howe, Microstructure to substrate self-assembly using capillary forces , IEEE Journal of Microelectromechanical System, vol. 10, No. 1, pp.1057-7157, Mar. 2001
[20] R. S. Fearing, Survey of Sticking Effects for Micro Parts Handling in Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, Aug. 1995
[21] G.M. Whitesides and B. Grzybowski, Self-Assembly at All Scales, Science, vol. 295, Issue 5564, pp. 2418-2421, Mar. 2002
[22] Hsu-Fong Ou, The Research of Devices Binding by Fluidic Self-Assembly Techniques, Mater Thesis, Department of Engineering Science, National Cheng Kung University, July 2006.
[23] Cheng Lin, Uniquely Orienting Micro Device for Self-alignment in Surface Tension Driven Micro self-assembly, National Tsing Hua University PhD Dissertation, Sep. 2008
[24] Jung-Chieh Hsu, “Self-Assembly by Surface Tension, Master Thesis, Department of Engineering Science, National Cheng Kung University, July 2010.
[25] Chii-Rong Yang, “Development and characteristics analysis of super-hydrophobic film by atmospheric pressure plasma deposition, Department of Mechatronic Engineering, National Taiwan Normal University, July 2013.
[26] Heiko O. Jacobs, Andrea R. Tao, Alexander Schwartz, David H. Gracias and George M. Whitesides, “Fabrication of a cylindrical display by patterned assembly, Vol.296, pp. 323–325. Apr 2002
[27] Wei Zheng and Heiko O. Jacobs, “Shape-and-solder-directed self-assembly to package Semiconductor device segments, Appl. Phys. Lett. Vol.85, 3635–3637. Oct. 2004
[28] Seongkyu Cho ; Daewon Lee ; Sunghoon Kwon, “Fluidic Self-Assembly Transfer Technology for Micro-Led Display , in IEEE 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 978-1-5386-8104-6/19/, Aug. 2019
[29] Takafumi Fukushima, “Multilithic 3D and Heterogeneous Integration Using Capillary Self-Assembly, in 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 978-1-7281-2539-8/20/, Jun. 2020
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top