(34.226.234.102) 您好!臺灣時間:2021/05/12 08:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭受惠
研究生(外文):Sou-HuiHsiao
論文名稱:自組裝雙硫醇單分子層及銀修飾蕭特基式氮氧化物感測器之研製
論文名稱(外文):Fabrication of Novel NOx Sensors Based on Schottky Diode Modified by Self-assembled Dithiol Monolayer and Silver
指導教授:陳慧英陳慧英引用關係
指導教授(外文):Huey-Ing Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:165
中文關鍵詞:自組裝單分子層直鏈雙硫醇銦化鎵砷化鎵蕭特基二極體氣體感測器氮氧化物
外文關鍵詞:Self-assembled monolayers (SAM)AlkanedithiolAgInGaPGaAsSchottky diodeGas sensorsNitrogen oxides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文係以癸二硫醇(1,10-decanedithiol, DDT)修飾金/磷化銦 (Au/InGaP)及金/砷化鎵(Au/GaAs)蕭特基二極體作為高感測度及高選擇性之氮氧化物氣體感測器(NOx),並進一步利用銀修飾癸二硫醇尾端官能基(-SH)以增加感測器之感測效果。自組裝單分子層(SAM)修飾主要係利用其尾端官能基對NOx之選擇特性,增進感測器在室溫下對NOx氣體之選擇性。本研究之元件主要以半導體製程及含浸方法製備,並著重於含浸方法對修飾影響之討論,其中包含SAM之尾端官能基、烴基直鏈雙硫醇之碳數、含浸濃度及含浸時間,且以循環伏安法進行特性分析。此外,本文中亦利用UV-Vis及XPS進行特性分析,瞭解NOx分子與感測層(DDT and Ag/DDT)之間之關係。本文中以DDT/Au/InGaP、DDT/Au/GaAs、Ag/DDT/Au/InGaP及Ag/DDT/Au/GaAs四種蕭特基二極體元件分別對NO2 及NO氣體進行感測,感測環境(不同NOx氣體濃度及感測溫度…等)之影響亦於本文中探討。由實驗結果得知,自組裝單分子層修飾元件表面成功使感測元件於常溫下對NOx氣體具有良好感測選擇性,並且銀之修飾亦增加感測元件對NOx氣體之感測響應。另外,本文以DDT/Au/InGaP及Ag/DDT/Au/InGaP元件之感測結果,進一步進行動力及熱力模組分析。最後,再以分子模擬方法探討DDT/Au、Ag/DDT/Au及NO2、NO分子間交互關係。
This work focused on highly sensitive and highly selective NOx gas sensors based on 1,10-decanedithiol (DDT)/Au/InGaP, DDT/Au/n-GaAs, Ag/DDT/Au/InGaP, and Ag/DDT/Au/n-GaAs Schottky diodes. A self-assembled monolayer (SAM) was used to functionalize the surfaces of devices with the thiol-terminal group for enhanced selectivity between NOx gas molecules and sensing devices at room temperature. The metal Ag was then used to improve the sensing performance of devices. In this study, the devices were fabricated using semiconductor processes and immersion treatment. The effects of the SAM terminal group, carbon number of alkanedithiol, immersion concentration, and immersion time were studied through cyclic voltammetry measurement. Moreover, the interaction between the NOx molecules and the sensing layer (DDT and Ag/DDT) was investigated using ultraviolet-visible spectroscopy and X-ray photoelectron spectroscopy measurements. The sensing performance of the DDT/Au/InGaP, DDT/Au/n-GaAs, Ag/DDT/Au/InGaP, and Ag/DDT/Au/n-GaAs Schottky diodes under different NOx concentrations and the appropriate conditions for the sensing environment are discussed with gas sensing measurement. Clearly, the SAM successfully provided high selectivity between the NOx gas molecules and the sensing devices at room temperature, and Ag also enhanced the sensing response of devices. Moreover, the sensing performance of the DDT/Au/InGaP and Ag/DDT/Au/InGaP devices were analyzed using kinetic and thermodynamic models. A molecular simulation was also performed to investigate the relationship between NO2, NO molecules and DDT/Au, Ag/DDT/Au substrates.
摘要 I
Abstract II
誌 謝 IV
Contents VI
Table content IX
Figure content XI
Chapter 1 Introduction 1
1.1 NOx gas sensors 1
1.2 Self-assembled monolayer 4
1.2.1 SAM application 5
1.3 Motivations and objective 7
Chapter 2 Sensing principle of the Schottky diode-based NOx gas sensor 12
2.1 Sensing mechanism between NOx gas molecules and SAM/Au InGaP Schottky diode 12
2.1.1 Interaction between NOx gas molecules and SAM/Au InGaP Schottky diode 12
2.2 Theory of the Schottky diode gas sensor 12
2.3 Molecular simulation of NOx adsorption on the alkanedithiol/Au and the Ag/DDT/Au 17
2.3.1 Principle 18
2.3.2 Molecule simulation application for gas sensors 20
Chapter 3 Experimental 24
3.1 Chemicals and materials 24
3.1.1 Chemicals 24
3.1.2 Materials 26
3.1.3 Gases 26
3.2 Apparatus and measurements 27
3.2.1 Apparatus 27
3.2.2 Measurements 28
3.3 Device fabrication process and characterization analysis 28
3.3.1 Sensing device fabrication 28
3.3.2 Characterization analysis 32
Chapter 4 Self-assembled monolayer (SAM) modified Au/InGaP and Au/GaAs Schottky diodes on NOx gas detection 41
4.1 Cyclic voltammetry measurement 41
4.1.1 Terminal group 41
4.1.2 Carbon number 42
4.1.3 Immersion concentration 43
4.1.4 Immersion time 44
4.2 UV/Vis measurement 44
4.3 Gas sensing measurement 45
4.3.1 NOx gas sensor based on the 1,10-decanedithiol (DDT)/Au/InGaP Schottky diode 45
4.3.2 NOx gas sensor based on the 1,10-decanedithiol (DDT)/Au/GaAs Schottky diode 51
4.4 Conclusion 53
Chapter 5 Ag modified 1,10-decanedithiol (DDT)/Au/InGaP and DDT/Au/GaAs Schottky diode on NOx gas detection 87
5.1 FTIR measurement 87
5.2 XPS measurement 88
5.3 Gas sensing measurement 88
5.3.1 NOx gas sensor based on the Ag/DDT/Au InGaP Schottky diode 88
5.3.2 NO2 gas sensor based on the Ag/DDT/Au GaAs Schottky diode 92
5.4 Conclusion 96
Chapter 6 Simulation of NOx molecules interact with SAM/Au and Ag/SAM/Au 121
6.1 Simulation method 121
6.2 Interaction between NOx gas and SAM/Au structure 124
6.2.1 Alkanedithiol/Au, NO, and NO2 structure set up 124
6.2.2 NOx gas molecules adsorption on alkanedithiol/Au 124
6.2.3 LUMO-HOMO interaction between the NOx and 1,10-decanedithiol (DDT)/Au 126
6.3 Interaction between NOx gas and Ag/DDT/Au structure 127
6.3.1 Ag/DDT/Au structure set up 127
6.3.2 NOx gas molecules adsorption on Ag/DDT/Au 127
6.3.3 LUMO-HOMO interaction between the NOx and Ag/DDT/Au 127
6.4 Selectivity 128
6.4.1 Interference gas molecules adsorption on DDT/Au and Ag/DDT/Au 128
6.4.2 LUMO-HOMO of the interference gases on DDT/Au and Ag/DDT/Au 128
6.4.3 Comparison of different gases adsorbed on alkanedithiol/Au and Ag/DDT/Au structures 129
6.5 Conclusion 130
Chapter 7 Conclusion and prospectives 155
7.1 Conclusion 155
7.2 Prospectives 156
Reference 158
[1]A. Kadiyala, A. Kumar, A. Vijayan, Study of occupant exposure of drivers and commuters with temporal variation of in-vehicle pollutant concentrations in public transport buses operating on alternative diesel fuels, Open Environ. Eng. J., 3, 55-70, 2010.
[2]G. M. Kim, J. W. Jeong, J. S. Jeong, D. Y. Kim, S. M. Kim, and C. H. Jeon, Empirical formula to predict the NOx emissions from coal power plant using lab-scale and real-scale operating data, Appl. Sci., 9, 2914, 2019.
[3]A. W. Brewer, C. T. Mcelroy, J. B. Kerr, Nitrogen dioxide concentrations in atmosphere, Nature, 246, 129-133, 1973.
[4]C. K. Stiber, J. Höjer, Å. Sjöholm, G. Bluhm, and H. Salmonson, Nitrogen dioxide pneumonitis in ice hockey players, Intern. Med. J., 239, 451-456, 1996.
[5]L. T. T. Tuyen, D. X. Vinh, P. H. Khoi, and G. Gerlach, Highly sensitive NOx gas sensor based on a Au/n-Si Schottky diode, Sens. Actuators B: Chem., 84, 226-230, 2002.
[6]C. Varenne, J. Brunet, A. Pauly, and B. Lauron, Influence of electrical characteristics on the sensitivity of p-InP-based pseudo-Schottky diodes for NO2 monitoring in atmosphere, Sens. Actuators B: Chem., 134, 597-603, 2008.
[7]W. Zhang, E. A. D. Vasconcelos, H. Uchida, T. Katsube, T. Nakatsubo, and Y. Nishioka, A study of silicon Schottky diode structures for NOx gas detection, Sens. Actuators B: Chem., 65, 154-156, 2000.
[8]S. H. Hsiao, J. X. Wu, and H. I. Chen, High-selectivity NOx sensors based on an Au/InGaP Schottky diode functionalized with self-assembled monolayer of alkanedithiols, Sens. Actuators B: Chem., 305, 127269, 2020.
[9]S. H. Hsiao, B. J. Lin, and H. I. Chen, Nitrogen oxides sensing performance of thiols and dithiols self-assembled monolayer functionalized Au/GaAs-based Schottky diodes IEEE, Sens. J., 20, 2844-2851, 2020.
[10]Y. C. Wong, B. C. Ang, A. S. M. A. Haseeb, A. A. Baharuddin, and Y. H. Wong, Review-conducting polymers as chemiresistive gas sensing materials: a review, J. Electrochem. Soc., 167, 037503, 2020.
[11]E. Espid, B. Adeli, and F. Taghipour, Enhanced gas sensing performance of photo-activated, Pt-decorated, single-crystal ZnO nanowires, J. Electrochem. Soc., 166, H3223-H3230, 2019.
[12]M. Nagao, K. Kobayashi, P. Lv, S. Teranishi, and T. Hibino, An intermediate-temperature biomass fuel cell using wood sawdust and pulp directly as fuel, J. Electrochem. Soc., 164, F557-F563, 2017.
[13]Z. Liu, X. Yang, L. Huo, X. Tian, T. Qi, F. Yang, X. Wang, K. Yu, F. Ma, and J. Sun, P-CuPcTS/n-SnO2 organic-inorganic hybrid film for ppb-level NO2 gas sensing at low operating temperature, Sens. Actuators B: Chem., 248, 324-331, 2017.
[14]Y. Yamada and M. Ogita, Improvement in the selectivity of semiconducting resistive-type NO2 sensors linked with calorimetric hydrocarbon sensors, Jpn. J. Appl. Phys., 41, 5870-5873, 2002.
[15]N. S. Harale, A. S. Kamble, N. L. Tarwal, I. S. Mulla, V. K. Rso, J. H. Kim, and P. S. Patil, Hydrothermally grown ZnO nanorods arrays for selective NO2 gas sensing: effect of anion generating agents, Ceram. Int., 42, 12807-12814, 2016.
[16]E. R. Waclawik, J. Chang, A. Ponzoni, I. Concina, D. Zappa, E. Comini, N. Motta, G. Faglia, and G. Sberveglieri, Functionalised zinc oxide nanowire gas sensors: enhanced NO2 gas sensor response by chemical modification of nanowire surfaces, Beilstein I. Nanotechnol., 3, 368-377, 2012.
[17]W. Lin, L. Xu, K. Sheng, C. Chen, X. Zhou, B. Dong, X. Bai, S. Zhang, G. Lu, and H. Song, APTES-functionalized thin-walled porous WO3 nanotubes for highly selective sensing of NO2 in a polluted environment, J. Mater. Chem. A, 6, 10976-10989, 2018.
[18]L. Chen and S. Tsang, Ag doped WO3-based powder sensor for the detection of NO gas in air, Sens. Actuators B: Chem., 89, 68-75, 2003.
[19]R. K. Sonker, and B. C. Yadav, Development of Fe2O3–PANI nanocomposite thin film based sensor for NO2 detection, J. Taiwan Inst. Chem. Eng., 77, 276-281, 2017.
[20]G. Li, Y. Xia, Y. Tian, Y. Wu, J. Liu, Q. He, and D. Chen, Review—recent developments on graphene-based electrochemical sensors toward nitrite, J. Electrochem. Soc., 166, B881-B895, 2019.
[21]P. Balasubramanian, M. Velmurugan, S. M. Chen, T. W. Chen, and Y. T. Ye, A single-step electrochemical preparation of cadmium sulfide anchored ERGO/β-CD modified screen-printed carbon electrode for sensitive and selective detection of nitrite, J. Electrochem. Soc., 166, B690-B696, 2019.
[22]M. Keerthi, S. Manavalan, S. M. Chen, and P. W. Shen, A facile hydrothermal synthesis and electrochemical properties of manganese dioxide@graphitic carbon nitride nanocomposite toward highly sensitive detection of nitrite, J. Electrochem. Soc., 166, B1245-B1250, 2019.
[23]H. Huang, Y. Yue, L. Li, and J. J. Zhu, Rare earth oxide Dy2O3-Au nanocomposite-based electrochemical sensor for sensitive determination of nitrite, J. Electrochem. Soc., 164, H321-H325, 2017.
[24]T. Liu, X. Wang, L. Li, and J. Yu, Review-electrochemical NOx gas sensors based on stabilized zirconia, J. Electrochem. Soc., 164, B610-B619, 2017.
[25]R. You, T. Wang, H. Yu, J. Wang, G. Lu, F. Liu, and T. Cui, Mixed-potential-type NO2 sensors based on stabilized zirconia and CeO2-B2O3 (B = Fe, Cr) binary nanocomposites sensing electrodes, Sens. Actuators B: Chem., 266, 793-804, 2018.
[26]Y. S. Yoo, A. Bhardwaj, J. W. Hong, H. N. Im, and S. J. Song, Sensing performance of a YSZ-based electrochemical NO2 sensor using nanocomposite electrodes, J. Electrochem. Soc., 166, B799-B804, 2019.
[27]L. Wang, W. W. Meng, Z. X. He, W. Meng, Y. H. Li, and L. Da, Enhanced selective performance of mixed potential ammonia gas sensor by Au nanoparticles decorated CeVO4 sensing electrode, Sens. Actuators B: Chem., 272, 219-228, 2018.
[28]A. Bhardwaj, I. H. Kim, J. W. Hong, A. Kumar, and S. J. Song, Transition metal oxide (Ni, Co, Fe)-tin oxide nanocomposite sensing electrodes for a mixed-potential based NO2 sensor, Sens. Actuators B: Chem., 284, 534-544, 2019.
[29]L. Qi, L. Yu, Z. Liu, F. Guo, Y. Y. Gu, X. Fan, An enhanced optoelectronic NO2 gas sensors based on direct growth ZnO nanowalls in situ on porous rGO, J. Alloys Compd., 749, 244-249, 2018.
[30]J. Hodgkinson and R. P. Tatam, Optical gas sensing: a review, Meas. Sci. Technol., 24 012004, 2013.
[31]Y. Yamada and M. Ogita, Improvement in the selectivity of semiconducting resistive type NO2 sensors linked with calorimetric hydrocarbon sensors, Jpn. J. Appl. Phys., 41, 5870-5873, 2002.
[32]E. B. Lee, I. S. Hwang, J. H. Cha, H. J. Lee, W. B. Lee, J. J. Pak, J. H. Lee, B. K. Ju, Micromachined catalytic combustible hydrogen gas sensor, Sens. Actuators B: Chem., 153, 392-397, 2011.
[33]A. Karakuscu, A. Ponzoni, E. Comini, and G. Sberreglieri, SiC foams decorated with SnO2 nanostructures for room temperature gas sensing, Int. J. Appl. Ceram. Tec., 11, 851-857, 2014.
[34]N. S. Harale, A. S. Kamble, N. L. Tarwal, I. S. Mulla, V. K. Rao, J. H. Kim, and P. S. Patil, Hydrothermally grown ZnO nanorods arrays for selective NO2 gas sensing: effect of anion generating agents, Ceram. Int., 42, 12807-12814, 2016.
[35]J. Zhang, G. Jiang, T. Cumberland, P. Xu, Y. Wu, S. Delaat, A. Yu, Z. Chen, A highly sensitive breathable fuel cell gas sensor with nanocomposite solid electrolyte, InfoMat., 1, 234-241, 2019.
[36]C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza, Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system, Chem. Soc. Rev., 39, 1805-1834, 2010.
[37]L. Huo, P. Du, K. Zhang, P, Liu, and H. Zhou, Self-assembled monolayer of multiply-alkylated cyclopentenes on silicon via thiol-ene click reaction and its self-lubricating properties, Appl. Surf. Sci., 477, 96-103, 2019.
[38]S. Hu, Z. Chen, and X. Guo, Inhibition effect of three-dimension (3D) nanostructure on the corrosion resistance of 1-dodecanethiol self-assembled monolayer on copper in NaCl solution, Materials, 11, 1225-1241, 2018.
[39]A. Motealleh, P. Dorri, and N. S. Kehr, Self-assembled monolayers of chiral periodic mesoporous organosilica as a stimuli responsive local drug delivery system, J. Mater. Chem. B, 7, 2362-2371, 2019.
[40]P. R. Solanki, A. Kaushik, T. Manaka, M. K. Pandey, M. Iwamoto, V. V. Agrawal, and B. D. Malhotra, Self-assembled monolayer based impedimetric platform for food borne mycotoxin detection, Nanoscale, 2, 2811-2817, 2010.
[41]T. Zhao, X. Fu, X. Cui, G. Lian, Y. Liu, S. Song, Q. Wang, K. Wang, D. Cui, An in-situ surface modification route for realizing the synergetic effect in P3HT-SnO2 composite sensor and strikingly improving its sensing performance, Sens. Actuators B: Chem., 241, 1210-1217, 2017.
[42]W. Lin, L. Xu, K. Sheng, C. Chen, X. Zhou, B. Dong, X. Bai, S. Zhang, G. Lu, H. Song, APTES-functionalized thin-walled porous WO3 nanotubes for highly selective sensing of NO2 in a polluted environment, J. Mater. Chem. A, 6, 10976-10989, 2018.
[43]A. Gad, M. W. G. Hoffmann, O. Casals, L. Mayrhofer, C. Fabrega, L. Caccamo, F. H. Ramirez, M. S. Mohajerani, M. Moseler, H. Shen, A. Waag, J. D. Prades, Integrated strategy toward self-powering and selectivity tuning of semiconductor gas sensors, ACS Sens., 1, 1246-1264, 2016.
[44]H. I. Chen, C. Y. Chi, W. C. Chen, I. P. Liu, C. H. Chang, T. C. Chou, and W. C. Liu, Ammonia sensing characteristic of a Pt nanoparticle/aluminum-doped zinc oxide sensor, Sens. Actuators B: Chem., 267, 145-154, 2018.
[45]C. Y. Chi, H. I. Chen, W. C. Chen, C. H. Chang, and W. C. Liu, Formaldehyde sensing characteristics of an aluminum-doped zinc oxide (AZO) thin-film-based sensor, Sens. Actuators B: Chem., 255, 3017-3024, 2018.
[46]H. I. Chen, C. H. Chang, H. H. Lu, I. P. Liu, W. C. Chen, B. Y. Ke, and W. C. Liu, Hydrogen sensing performance of a Pd/HfO2/GaN metal-oxide-semiconductor (MOS) Schottky diode, Sens. Actuators B: Chem., 262, 852-859, 2018.
[47]H. I. Chen, K. C. Chuang, C. H. Chang, W. C. Chen, I. P. Liu, and W. C. Liu, Hydrogen sensing characteristics of a Pd/AlGaOx/AlGaN-based Schottky diode, Sens. Actuators B: Chem., 246, 408-414, 2017.
[48]H. I. Chen, Y. C. Cheng, C. H. Chang, W. C. Chen, I. P. Liu, K. W. Lin, and W. C. Liu, Hydrogen sensing performance of a Pd nanoparticle/Pd film/GaN-based diode, Sens. Actuators B: Chem., 247, 514-519, 2017.
[49]C. C. Chen, H. I. Chen, I. P. Liu, H. Y. Liu, P. C. Chou, J. K. Liou, and W. C. Liu, Enhancement of hydrogen sensing performance of a GaN-based Schottky diode with a hydrogen peroxide surface treatment, Sens. Actuators B: Chem., 211, 303-309, 2015.
[50]X. Zhuang, W. Huang, S. Han, Y. Jiang, H. Zheng, and J. Yu, Interfacial modifying layer-driven high-performance organic thin-film transistors and their nitrogen dioxide gas sensors, Org. Electron., 49, 334-339, 2017.
[51]Q. Li and J. R. L. Jr., A conspectus of cellular mechanisms of nitrosothiol formation from nitric oxide, For. Immunopathol. Dis. Therap., 3, 183-191, 2012.
[52]D. R. Cameron, A. M. P. Borrajo, B. M. Bennett, and G. R. J. Thatcher, Organic nitrates, thionitrates, peroxynitrites, and nitric oxide: a molecular orbital study of the RXNO2 ↹ RXONO (X = 0, S) rearrangement, a reaction of potential biological significance, Can. J. Chem., 73, 1627-1638, 1995.
[53]M. W. G. Hoffmann, L. Mayrhofer, O. Casals, L. Caccamo, F. H. Ramirez, G. Lilienkamp, W. Daum, M. Moseler, A. Waag, H. Shen, and J. D. Prades, A highly selective and self-powered gas sensor via organic surface functionalization of p-Si/n-ZnO diodes, Adv. Mater., 26, 8017-8022, 2014.
[54]P. J. Hasnip, K. Refson, M. I. J. Probert, J. R. Yates, S. J. Clark, and C. J. Pickard, Density functional theory in the solid state, Phil. Trans, R. Soc. A, 372, 20130270, 2014.
[55]H. S. Yu, S. L. Li, and D. G. Truhlar, Perspective: Kohn-Sham density functional theory descending a staircase, J. Chem. Phys., 145, 130901, 2016.
[56]P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical Review, 136, B864-B871, 1964.
[57]W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133-A1138, 1965.
[58]K. OHNO, Quantum chemistry, 148.
[59]T. Liu, Y. Chen, M. Zhang, L. Yuan, C. Zhang, J. Wang, and J. Fan, A first-principles study of gas molecule adsorption on borophene, AIP Adv., 7, 125007, 2017.
[60]S. Ma, L. Su, L. Jin, J. Su, and Y. Jin, A first-principles insight into Pd-doped MoSe2 monolayer: a toxic gas scavenger, Phys. Lett. A, 383, 125868, 2019.
[61]C. Liu, C. S. Liu, and X. Yan, Arsenene as a promising candidate for NO and NO2 sensors: a first-principles study, Phys. Lett. A, 381, 1092-1096, 2017.
[62]Simon M. Sze, Ming-Kwei Lee, Semiconductor devices: physics and technology, Wiley, 317-329, 2015.
[63]N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, A practical beginner’s guide to cyclic voltammetry, J. Chem. Educ., 95, 197-206, 2018.
[64]J. Schlenoff, M. Li, H. Ly, Stability and self-exchange in alkanethiol monolayers, J. Am. Chem. Soc., 117, 12528-12536, 1995.
[65]J. D. C. Jacob, T. R. Lee, S. Baldelli, In situ vibrational study of the reductive desorption of alkanethiol monolayers on gold by sum frequency generation spectroscopy, J. Phys. Chem. C, 118, 29126-29134, 2014.
[66]T. Kakiuchi, H. Usui, D. Hobara, M. Yamamoto, Voltammetric properties of the reductive desorption of alkanethiol self-assembled monolayers from a metal surface, Langmuir, 18, 5231-5238, 2002.
[67]H. He, Y. Guo, S. Wang, and Y. Jiang, Comparative study on the adsorption processes of alkanethiol and alkanedithiol on gold, Surf. Rev. Lett., 17, 397-403, 2010.
[68]D. Qu, B. C. Kim, C. W. J. Lee, and K. Uosaki, 1, n-alkanedithiol (n = 2, 4, 6, 8, 10) self-assembled monolayers on Au (111): electrochemical and theoretical approach, Bull. Korean Chem. Soc., 30, 2549-2554, 2009.
[69]K. Jans, K. Bonroy, R. D. Palma, G. Reekmans, H. Jans, W. Laureyn, M. Smet, G. Borghs, and G. Maes, Stability of mixed PEO-thiol SAMs for biosensing applications, Langmuir, 24, 3949-3954, 2008.
[70]J. X. Wu, Fabrication of thiol monolayer functionalized schottky-type NOx sensors, National Cheng kung university, 2018.
[71]R. Ionescu, U. Cindemir, T. G. Welearegay, R. Calavia, Z. Haddi, Z. Topalian, C. G. Granqvist, and E. Llobet, Fabrication of ultra-pure gold nanoparticles capped with dodecanethiol for Schottky-diode chemical gas sensing devices, Sens. Actuators B: Chem., 239, 455-461, 2017.
[72]T. Kakiuchi, H. Usui, D. Hobara, and M. Yamamoto, Voltammetric properties of the reductive desorption of alkanethiol self-assembled monolayers from a metal surface, Langmuir, 18, 5231-5238, 2002.
[73]A. Kunimoto, N. Abe, H. Uchida, and T. Katsube, Highly sensitive semiconductor NOx gas sensor operating at room temperature, Sens. Actuators B: Chem., 65, 122-124, 2000.
[74]H. J. Xia, Y. Wang, F. H. Kong, S. R. Wang, B. L. Zhu, X. Z. Guo, J. Zhang, Y. M. Wang, and S. H. Wu, Au-doped WO3-based sensor for NO2 detection at low operating temperature. Sens. Actuators B: Chem., 134, 133–139, 2008.
[75]M. A. D. Millone, H. Hamoudi, L. Rodríguez, A, Rubert, G. A. Benítez, M. E. Vela, R. C. Salvarezza, J. E. Gayone, E. A. Sánchez, O. Grizzi, C. Dablemont, and V. Esaulov, Self-assembly of alkanedithiols on Au(111) from solution:effect of chain length and self-assembly conditions, Langmuir, 25 12945-12953, 2009.
[76]S. Kohale, S. M. Molina, B. L. Weeks, R. Khare, and L. J. H. Weeks, Monitoring the formation of self-assembled monolayer of alkanedithiols using a micromechanical cantilever sensor, Langmuir, 23, 1258-1263, 2007.
[77]P. G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai, and A. J. Janczuk, Nitric oxide donors: chemical activities and biological applications, Chem. Rev., 102, 1091-1134, 2002.
[78]X. Zhuang, W. Huang, S. Han, Y. Jiang, H. Zheng, and J. Yu, Interfacial modifying layer-driven high-performance organic thin-film transistors and their nitrogen dioxide gas sensors, Org. Electron., 49, 334-339, 2017.
[79]K. J. Choi and H. W. Jang, One-dimensional oxide nanostructures as gas-sensing materials: review and issue, Sensors (Basel), 10, 4083-4099, 2010.
[80]P. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai, and A. Janczuk, Nitric oxide donors: chemical activities and biological applications, Chem. Rev., 102, 1091-1134, 2002.
[81]M. Reddeppa, B. G. Park, N. D. Chinh, D. Kim, J. E. Oh, T. G. Kim, and M. D. Kim, A novel low-temperature resistive NO gas sensor based on InGaN/GaN multi-quantum well-embedded p-i-n GaN nanorods, Dalton Trans., 48, 1367-1375, 2019.
[82]P. Kuberský, T. Syrový, A. Hamáček, S. Nešpůrek, and L. Syrová, Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte, Sens. Actuators B: Chem., 209, 1084-1090, 2015.
[83]A. R. Jalil, H. Chang, V. K. Bandari, P. Robaschik, J. Zhang, P. F. Siles, G. Li, D. Bürger, D. Grimm, X. Liu, G. Salvan, D. R. T. Zahn, F. Zhu, H. Wang, D. and Yan, O. G. Schmidt, Fully integrated organic nanocrystal diode as high performance room temperature NO2 sensor, Adv Mater., 28, 2917-2977, 2016.
[84]N. Karmakar, R. Fernandes, S. Jain, U. V. Patil, N. G. Shimpi, N. V. Bhat, and D. C. Kothari, Room temperature NO2 gas sensing properties of p-toluenesulfonic acid doped silver-polypyrrole nanocomposite, Sens. Actuators B: Chem., 242, 118–126, 2017.
[85]M. Farrag, M. Thämer, M. Tschurl, T. Bürgi, and U. Heiz, Preparation and spectroscopic properties of monolayer-protected silver nanoclusters, J. Phys. Chem. C, 116, 8034, 2012.
[86]L. S. Strizhko, S. I. Loleit, and A. O. Novakovskaya, A dynamic model of the process of biosorption of silver, Russ. J. Non-Ferr. Met., 50, 377-382, 2009.
[87]G. Polzonetti, P. Alnot, and C. R. Brundle, The adsorption and reactions of NO2, on the Au(111) surface I. XPS/WPS and annealing studies between 90 and 300 K, Surf. Sci., 238, 226, 1990.
[88]I. H. Wani, S. H. M. Jafri, J. Warna, A. Hayat, H. Li, V. A. Shukla, A. Orthaber, A. Grigoriev, R. Ahuja, and K. Leifer, A sub 20 nm metal-conjugated molecule junction acting as a nitrogen dioxide sensor, Nanoscale, 11, 6571-6575, 2019.
[89]S. H. Wang, C. Y. Shen, J. M. Su, and S. W. Chang, A room temperature nitric oxide gas sensor based on a copper-ion-doped polyaniline/tungsten oxide nanocomposite, Sensors, 15, 7084-7095, 2015.
[90]A. R. Jalil, H. Chang, V. K. Bandari, P. Robaschik, J. Zhang, P. F. Siles, G. Li, D. Bürger, D. Grimm, X. Liu, G. Salvan, D. R. T. Zahn, F. Zhu, H. Wang, D. Yan, and O. G. Schmidt, Fully integrated organic nanocrystal diode as high performance room temperature NO2 sensor, Adv. Mater., 28, 2971-2977, 2016.
[91]J. M. Fukuto, S. J. Carrington, D. J. Tantillo, J. G. Harrison, L. J. Ignarro, B. A. Freeman, A. Chen, and D. A. Wink, Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species, Chem. Res. Toxicol., 25, 769-793, 2012.
[92]R. Seifert, A. Kunzmann, and G. Calzaferri, The yellow color of silver-containing zeolite a, Angew. Chem. Int. Ed., 37, 1521-1524, 1998.
[93]J. Fukuto, S. Carrington, D. Tantillo, J. Harrison, L. Ignarro, B. Freeman, A. Chen, and D. Wink, Chem. Res. Toxicol., 25, 769, 2012.
[94]M. Oszwałldowski, and M. Zimpel, Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb, J. Phys. Chem. Solids, 49, 1179, 1988.
[95]L. Guo, Y. W. Hao, P. L. Li, J. F. Song, R. Z. Yang, X. Y. Fu, S. Y. Xie, J. Zhao, and Y. L. Zhang, Improved NO2 gas sensing properties of graphene oxide reduced by two-beam-laser interference, Sci. Rep., 8, 4918, 2018.
[96]J. M. Devi, A simulation study on the thermal and wetting behavior of alkane thiol SAM on gold (111) surface, Prog. Nat. Sci., 24, 405-411, 2014.
[97]S. Vorobyev, M. Likhatski, A. Romanchenko, N. Maksimov, S. Zharkov, A. Krylov, and Y. Mikhlin, Colloidal and deposited products of the interaction of tetrachloroauric acid with hydrogen selenide and hydrogen sulfide in aqueous solutions, Minerals, 8, 492, 2018.
[98]Y. Gui, T. Li, X. He, Z. Ding, and P. Yang, Pt cluster modified h-BN for gas sensing and adsorption of dissolved gases in transformer oil: a density functional theory study, Nanomaterials, 9, 1746, 2019.
[99]T. Chen, S. Yang, J. Chai, Y. Song, J. Fan, B. Rao, H. Sheng, H. Yu, M. Zhu, Crystallization-induced emission enhancement: a novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure, Sci. Adv., 3, e1700956, 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔