(3.236.118.225) 您好!臺灣時間:2021/05/14 12:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王藝森
研究生(外文):Yi-SenWang
論文名稱:具氧化還原活性之金屬有機骨架與其奈米複合材料於水相超電容中的應用
論文名稱(外文):The applications of redox-active metal─organic frameworks and their nanocomposites in aqueous supercapacitors
指導教授:龔仲偉
指導教授(外文):Chung-Wei Kung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:122
中文關鍵詞:石墨烯奈米緞帶氧化石墨烯氧化錳氧化還原躍遷超電容以鋯為基底的金屬有機骨架
外文關鍵詞:graphene nanoribonsgraphene oxidemanganese oxideredox hoppingsupercapacitorzirconium-based MOF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩個部分,第一部分將以鋯為基底的金屬有機骨架 (Zirconium-based metal–organic frameworks, Zr-MOFs)在室溫下直接生長在奈米碳材,包括石墨烯奈米緞帶 (Graphene nanoribbons, GNRs)以及氧化石墨烯 (Graphene oxide, GO),形成具導電性的奈米複合材料。其導電性以及孔洞性可藉由調整合成時MOF與碳材之間的比例而具高度可調性,而具氧化還原活性的錳活性中心,藉由後修飾的方式安裝至奈米複合材料的MOF結構上,使得電荷在MOF骨架內有氧化還原躍遷(redox hopping)的途徑可以傳遞,之後在水溶液態的電解質中探討MOF-GNR以及MOF-GO複合材料的擬電容表現。利用碳材的高度導電性以及MOF骨架中高密度具氧化還原活性的錳位置,使得經錳修飾的奈米複合材料相較於原始的錳修飾MOF以及錳修飾的碳材具有更好的擬電容表現。第二部分則是利用不同孔洞結構的Zr-MOFs,藉由後修飾安裝上具氧化還原活性的錳位置,使電荷同樣都能藉由redox hopping在不同骨架結構內傳遞。而後探討不同MOFs在水溶液態的電解質中的擬電容表現,找出具最佳超電容表現的Zr-MOF種類,為未來的研究提供Zr-MOFs在超電容應用方面較佳的結構選項。
In my thesis, nanocrystals of a zirconium-based metal–organic framework (Zr-MOF), UiO-66, were grown on two dimensionally distinct carboxylate-functionalized graphene-based materials, graphene oxide (GO) and graphene nanoribbons (GNRs), at room temperature to synthesize various electrically conducting UiO-66-carbon nanocomposites. The redox-active manganese sites were then installed in the UiO-66 and nanocomposites at room temperature by the solvothermal deposition in MOFs (SIM) technique to endue charge transport within the UiO-66 phase via redox hopping under electrochemical conditions. The electrochemical performances of these nanocomposites were investigated and compared with those of the Mn-decorated UiO-66 and Mn-decorated GO and GNRs. With the electrical conductivity provided by nanocarbons and the high-density redox-active manganese sites supported by the porous framework, the Mn-decorated nanocomposites exhibit better performances as the materials for pseudocapacitors than the pristine Mn-decorated MOF and nanocarbons.
To probe the effect of the pore structures of Zr-MOFs on the resulting electrochemical performances, four structurally distinct Zr-MOFs were used for the installation of manganese for gauging their pseudocapacitive behaviors. After decorated with Mn, the electrochemical performance of these Zr-MOFs were measured. The findings suggest that the manganese-decorated MOF-808 has a better electrochemical performance than other Mn-decorated Zr-MOFs, indicating that MOF-808 should be a better candidate for making nanocomposites for electrochemical purposes in future studies.
中文摘要 I
Abstract II
誌謝 XVI
目錄 XVII
表目錄 XXI
圖目錄 XXI
第一章 緒論 1
1-1 前言 1
1-2 電化學反應介紹 2
1-2-1電化學反應 2
1-2-2修飾電極 3
1-2-3電化學反應的應用 4
1-2-4 EDLCs的介紹 6
1-2-5 擬電容器的介紹 7
1-3 金屬有機骨架 13
1-3-1金屬有機骨架介紹 13
1-3-2金屬有機骨架的電荷傳輸 15
1-3-3後修飾金屬有機骨架 16
1-3-4金屬有機骨架於超電容中的應用 18
1-4實驗動機 21
第二章 實驗方法與儀器介紹 24
2-1實驗藥品與儀器介紹 24
2-1-1實驗藥品 24
2-1-2實驗儀器 26
2-2實驗方法 27
2-2-1實驗合成流程圖 27
2-2-2金屬有機骨架的合成 28
2-2-3石墨烯奈米緞帶 (GNRs)的合成 31
2-2-4奈米複合材料的合成 32
2-2-5錳修飾材料的合成 32
2-2-6材料鑑定以及儀器使用 34
2-2-7薄膜 (thin film)與錠片 (pellet)的製作 36
2-2-8電化學實驗 37
第三章 以鋯為基底的MOF並包含不同維度奈米碳材的奈米複合材料在超電容方面的研究 39
3-1奈米複合材料材料鑑定 39
3-1-1掃描式電子顯微鏡圖 (Scanning Electron Microscope images, SEM images) 39
3-1-2穿透式電子顯微鏡圖 (Transmission Electron Microscope images, TEM images) 43
3-1-3 粉末X射線繞射圖譜 (Power X-ray diffraction patterns, PXRD patterns) 44
3-1-4 X射線光電子光譜(X-ray Photoelectron Sprectroscopy, XPS) 45
3-1-5氮氣吸脫附曲線以及孔徑分析 (Nitrogen adsorption-desorption isotherms and Density Functional Theory (DFT) pore size distributions) 46
3-1-6電流對電壓曲線 (I-V curves) 51
3-2錳修飾奈米複合材料材料鑑定與電化學實驗結果 53
3-2-1掃描式電子顯微鏡圖 (Scanning Electron Microscope images, SEM images) 54
3-2-2粉末X射線繞射圖譜 (Power X-ray diffraction patterns, PXRD patterns) 56
3-2-3能量色散X-射線光譜結果 (Energy Dispersive Spectroscopic results, EDS results) 57
3-2-4循環伏安法曲線 (Cyclic Voltammetry curves, CV curves) 58
3-2-5充放電曲線 (Charge-discharge measurement curves, GCD curves) 60
3-2-6電化學阻抗圖譜 (Electrochemical Impedance Spectroscopy, EIS) 65
3-2-7充放電長期循環穩定性分析 (charge−discharge processlong-term stability) 67
3-3結論 68
第四章 以鋯為基底並具不同孔洞結構的金屬有機骨架之電化學性能探討 70
4-1實驗動機 70
4-2材料鑑定 73
4-2-1掃描式電子顯微鏡圖 (Scanning Electron Microscope images, SEM images) 73
4-2-2能量色散X-射線光譜結果 (Energy Dispersive Spectroscopic results, EDS results) 75
4-2-2粉末X射線繞射圖譜 (Power X-ray diffraction patterns, PXRD patterns) 77
4-2-3氮氣吸脫附曲線以及孔徑分析 (Nitrogen adsorption-desorption isothrms and Density Functional Theory (DFT) pore size distributions) 80
4-2-4紫外光與可見光吸收圖譜 (Ultraviolet–visible spectroscopy, UV-Vis spectroscopy) 83
4-2-5電感耦合電漿體光學發射光譜 (Inductively coupled plasma-optical emission spectrometry (ICP-OES)) 84
4-3電化學實驗結果 85
4-3-1循環伏安曲線 (Cyclic Voltammetry curves, CV curves) 85
4-3-2充放電曲線 (Charge-discharge measurement, GCD curves) 90
4-3-3計時安培分析法 (Chronoamperometry) 92
4-4結論 99
第五章 未來展望與建議 102
參考文獻 104
附錄:個人簡歷表 121
Benson, E.E., C.P. Kubiak, A.J. Sathrum, and J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chemical Society Reviews, 38, 1, p.89-99, 2009.
2.Shao, M.H., Q.W. Chang, J.P. Dodelet, and R. Chenitz, Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chemical Reviews, 116, 6, p.3594-3657, 2016.
3.Anantharaj, S., S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, and S. Kundu, Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. Acs Catalysis, 6, 12, p.8069-8097, 2016.
4.Thomas, S., T.G. Deepak, G.S. Anjusree, T.A. Arun, S.V. Nair, and A.S. Nair, A review on counter electrode materials in dye-sensitized solar cells. Journal of Materials Chemistry A, 2, 13, p.4474-4490, 2014.
5.Shi, M.L. and F.C. Anson, Rapid oxidation of Ru(NH3)(6)(3+) by Os(bpy)(3)(3+) within Nafion coatings on electrodes. Langmuir, 12, 8, p.2068-2075, 1996.
6.Bertoncello, P., I. Ciani, F. Li, and P.R. Unwin, Measurement of apparent diffusion coefficients within ultrathin Nafion Langmuir-Schaefer films: Comparison of a novel scanning electrochemical microscopy approach with cyclic voltammetry. Langmuir, 22, 25, p.10380-10388, 2006.
7.Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nature Materials, 7, 11, p.845-854, 2008.
8.Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 414, 6861, p.359-367, 2001.
9.Wang, X., Q.X. Wang, Q.H. Wang, F. Gao, F. Gao, Y.Z. Yang, and H.X. Guo, Highly Dispersible and Stable Copper Terephthalate Metal-Organic Framework-Graphene Oxide Nanocomposite for an Electrochemical Sensing Application. Acs Applied Materials & Interfaces, 6, 14, p.11573-11580, 2014.
10.Liu, Y.Y., Y.J. Zhang, J. Chen, and H. Pang, Copper metal-organic framework nanocrystal for plane effect nonenzymatic electro-catalytic activity of glucose. Nanoscale, 6, 19, p.10989-10994, 2014.
11.Mortimer, R.J., Electrochromic Materials. Annual Review of Materials Research, Vol 41, 41, p.241-268, 2011.
12.Service, R.F., Materials science - New 'supercapacitor' promises to pack more electrical punch. Science, 313, 5789, p.902-902, 2006.
13.Wang, G.P., L. Zhang, and J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41, 2, p.797-828, 2012.
14.Kotz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 45, 15-16, p.2483-2498, 2000.
15.Futaba, D.N., K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, and S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Materials, 5, 12, p.987-994, 2006.
16.Wu, N.L., Nanocrystalline oxide supercapacitors. Materials Chemistry and Physics, 75, 1-3, p.6-11, 2002.
17.Brousse, T., M. Toupin, R. Dugas, L. Athouel, O. Crosnier, and D. Belanger, Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. Journal of the Electrochemical Society, 153, 12, p.A2171-A2180, 2006.
18.Rudge, A., J. Davey, I. Raistrick, S. Gottesfeld, and J.P. Ferraris, Conducting Polymers as Active Materials in Electrochemical Capacitors. Journal of Power Sources, 47, 1-2, p.89-107, 1994.
19.Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media, 2013.
20.Zheng, J.P. and T.R. Jow, High energy and high power density electrochemical capacitors. Journal of Power Sources, 62, 2, p.155-159, 1996.
21.Lee, H.Y. and J.B. Goodenough, Supercapacitor behavior with KCl electrolyte. Journal of Solid State Chemistry, 144, 1, p.220-223, 1999.
22.Nakayama, M., A. Tanaka, Y. Sato, T. Tonosaki, and K. Ogura, Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties. Langmuir, 21, 13, p.5907-5913, 2005.
23.Babakhani, B. and D.G. Ivey, Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors. Journal of Power Sources, 195, 7, p.2110-2117, 2010.
24.Naoi, K., S. Suematsu, and A. Manago, Electrochemistry of poly(1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials. Journal of the Electrochemical Society, 147, 2, p.420-426, 2000.
25.Laforgue, A., P. Simon, and J.F. Fauvarque, Chemical synthesis and characterization of fluorinated polyphenylthiophenes: application to energy storage. Synthetic Metals, 123, 2, p.311-319, 2001.
26.Arico, A.S., P. Bruce, B. Scrosati, J.M. Tarascon, and W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 4, 5, p.366-377, 2005.
27.Choi, D., G.E. Blomgren, and P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Advanced Materials, 18, 9, p.1178-1182, 2006.
28.Machida, K., K. Furuuchi, M. Min, and K. Naoi, Mixed proton-electron conducting nanocomposite based on hydrous RuO2 and polyaniline derivatives for supercapacitors. Electrochemistry, 72, 6, p.402-404, 2004.
29.Toupin, M., T. Brousse, and D. Belanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chemistry of Materials, 16, 16, p.3184-3190, 2004.
30.Sugimoto, W., H. Iwata, Y. Yasunaga, Y. Murakami, and Y. Takasu, Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angewandte Chemie-International Edition, 42, 34, p.4092-4096, 2003.
31.Min, M., K. Machida, J.H. Jang, and K. Naoi, Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors. Journal of the Electrochemical Society, 153, 2, p.A334-A338, 2006.
32.Miller, J.M., B. Dunn, T.D. Tran, and R.W. Pekala, Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. Journal of the Electrochemical Society, 144, 12, p.L309-L311, 1997.
33.Malak-Polaczyk, A., C. Matei-Ghimbeu, C. Vix-Guterl, and E. Frackowiak, Carbon/lambda-MnO2 composites for supercapacitor electrodes. Journal of Solid State Chemistry, 183, 4, p.969-974, 2010.
34.Devaraj, S. and N. Munichandraiah, High capacitance of electrodeposited MnO2 by the effect of a surface-active agent. Electrochemical and Solid State Letters, 8, 7, p.A373-A377, 2005.
35.Pang, S.C., M.A. Anderson, and T.W. Chapman, Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. Journal of the Electrochemical Society, 147, 2, p.444-450, 2000.
36.Chang, J.K., M.T. Lee, and W.T. Tsai, In situ MnK-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications. Journal of Power Sources, 166, 2, p.590-594, 2007.
37.Toupin, M., T. Brousse, and D. Belanger, Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chemistry of Materials, 14, 9, p.3946-3952, 2002.
38.Devaraj, S. and N. Munichandraiah, The effect of nonionic surfactant triton X-100 during electrochemical deposition of MnO2 on its capacitance properties. Journal of the Electrochemical Society, 154, 10, p.A901-A909, 2007.
39.Yaghi, O.M., M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, and J. Kim, Reticular synthesis and the design of new materials. Nature, 423, 6941, p.705-714, 2003.
40.Furukawa, H., K.E. Cordova, M. O'Keeffe, and O.M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, 6149, p.974, 2013.
41.Kitagawa, S., R. Kitaura, and S. Noro, Functional porous coordination polymers. Angewandte Chemie-International Edition, 43, 18, p.2334-2375, 2004.
42.Ferey, G., Hybrid porous solids: past, present, future. Chemical Society Reviews, 37, 1, p.191-214, 2008.
43.Burtch, N.C., H. Jasuja, and K.S. Walton, Water Stability and Adsorption in Metal-Organic Frameworks. Chemical Reviews, 114, 20, p.10575-10612, 2014.
44.Murray, L.J., M. Dinca, and J.R. Long, Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 38, 5, p.1294-1314, 2009.
45.He, Y.B., W. Zhou, G.D. Qian, and B.L. Chen, Methane storage in metal-organic frameworks. Chemical Society Reviews, 43, 16, p.5657-5678, 2014.
46.Chen, Y.Z., R. Zhang, L. Jiao, and H.L. Jiang, Metal-organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews, 362, p.1-23, 2018.
47.Majewski, M.B., A.W. Peters, M.R. Wasielewski, J.T. Hupp, and O.K. Farha, Metal-Organic Frameworks as Platform Materials for Solar Fuels Catalysis. Acs Energy Letters, 3, 3, p.598-611, 2018.
48.Lee, J., O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, and J.T. Hupp, Metal-organic framework materials as catalysts. Chemical Society Reviews, 38, 5, p.1450-1459, 2009.
49.Ma, L.Q., C. Abney, and W.B. Lin, Enantioselective catalysis with homochiral metal-organic frameworks. Chemical Society Reviews, 38, 5, p.1248-1256, 2009.
50.Cadiau, A., K. Adil, P.M. Bhatt, Y. Belmabkhout, and M. Eddaoudi, A metal-organic framework-based splitter for separating propylene from propane. Science, 353, 6295, p.137-140, 2016.
51.Li, J.R., J. Sculley, and H.C. Zhou, Metal-Organic Frameworks for Separations. Chemical Reviews, 112, 2, p.869-932, 2012.
52.Kreno, L.E., K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, and J.T. Hupp, Metal-Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112, 2, p.1105-1125, 2012.
53.Campbell, M.G. and M. Dinca, Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices. Sensors, 17, 5, p.1108, 2017.
54.Choi, K.M., H.M. Jeong, J.H. Park, Y.B. Zhang, J.K. Kang, and O.M. Yaghi, Supercapacitors of Nanocrystalline Metal-Organic Frameworks. Acs Nano, 8, 7, p.7451-7457, 2014.
55.Salunkhe, R.R., Y.V. Kaneti, and Y. Yamauchi, Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. Acs Nano, 11, 6, p.5293-5308, 2017.
56.Shrivastav, V., S. Sundriyal, P. Goel, H. Kaur, S.K. Tuteja, K. Vikrant, K.H. Kim, U.K. Tiwari, and A. Deep, Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage. Coordination Chemistry Reviews, 393, p.48-78, 2019.
57.Cai, Z.X., Z.L. Wang, J. Kim, and Y. Yamauchi, Hollow Functional Materials Derived from Metal-Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. Advanced Materials, 31, 11, 2019.
58.Howarth, A.J., Y.Y. Liu, P. Li, Z.Y. Li, T.C. Wang, J. Hupp, and O.K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nature Reviews Materials, 1, 3, 2016.
59.Farha, O.K., I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.O. Yazaydin, and J.T. Hupp, Metal-Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? Journal of the American Chemical Society, 134, 36, p.15016-15021, 2012.
60.Honicke, I.M., I. Senkovska, V. Bon, I.A. Baburin, N. Bonisch, S. Raschke, J.D. Evans, and S. Kaskel, Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials. Angewandte Chemie-International Edition, 57, 42, p.13780-13783, 2018.
61.Cohen, S.M., Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks. Chemical Reviews, 112, 2, p.970-1000, 2012.
62.Islamoglu, T., S. Goswami, Z.Y. Li, A.J. Howarth, O.K. Farha, and J.T. Hupp, Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications. Accounts of Chemical Research, 50, 4, p.805-813, 2017.
63.Evans, J.D., C.J. Sumby, and C.J. Doonan, Post-synthetic metalation of metal-organic frameworks. Chemical Society Reviews, 43, 16, p.5933-5951, 2014.
64.Kuo, C.H., Y. Tang, L.Y. Chou, B.T. Sneed, C.N. Brodsky, Z.P. Zhao, and C.K. Tsung, Yolk-Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. Journal of the American Chemical Society, 134, 35, p.14345-14348, 2012.
65.Linder-Patton, O.M., T.J. de Prinse, S. Furukawa, S.G. Bell, K. Sumida, C.J. Doonan, and C.J. Sumby, Influence of nanoscale structuralisation on the catalytic performance of ZIF-8: a cautionary surface catalysis study. Crystengcomm, 20, 34, p.4926-4934, 2018.
66.Kobayashi, H., Y. Mitsuka, and H. Kitagawa, Metal Nanoparticles Covered with a Metal-Organic Framework: From One-Pot Synthetic Methods to Synergistic Energy Storage and Conversion Functions. Inorganic Chemistry, 55, 15, p.7301-7310, 2016.
67.Bai, Y., Y.B. Dou, L.H. Xie, W. Rutledge, J.R. Li, and H.C. Zhou, Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 45, 8, p.2327-2367, 2016.
68.Hod, I., P. Deria, W. Bury, J.E. Mondloch, C.W. Kung, M. So, M.D. Sampson, A.W. Peters, C.P. Kubiak, O.K. Farha, and J.T. Hupp, A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nature Communications, 6, 2015.
69.Usov, P.M., S.R. Ahrenholtz, W.A. Maza, B. Stratakes, C.C. Epley, M.C. Kessinger, J. Zhu, and A.J. Morris, Cooperative electrochemical water oxidation by Zr nodes and Ni-porphyrin linkers of a PCN-224 MOF thin film. Journal of Materials Chemistry A, 4, 43, p.16818-16823, 2016.
70.Kung, C.W., J.E. Mondloch, T.C. Wang, W. Bury, W. Hoffeditz, B.M. Klahr, R.C. Klet, M.J. Pellin, O.K. Farha, and J.T. Hupp, Metal-Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation. Acs Applied Materials & Interfaces, 7, 51, p.28223-28230, 2015.
71.Kung, C.W., C.O. Audu, A.W. Peters, H. Noh, O.K. Farha, and J.T. Hupp, Copper Nanoparticles Installed in Metal-Organic Framework Thin Films are Electrocatalytically Competent for CO2 Reduction. Acs Energy Letters, 2, 10, p.2394-2401, 2017.
72.Hod, I., M.D. Sampson, P. Deria, C.P. Kubiak, O.K. Farha, and J.T. Hupp, Fe-Porphyrin-Based Metal-Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2. Acs Catalysis, 5, 11, p.6302-6309, 2015.
73.Kung, C.W., T.H. Chang, L.Y. Chou, J.T. Hupp, O.K. Farha, and K.C. Ho, Porphyrin-based metal-organic framework thin films for electrochemical nitrite detection. Electrochemistry Communications, 58, p.51-56, 2015.
74.Wang, Y., L. Wang, W. Huang, T. Zhang, X.Y. Hu, J.A. Perman, and S.Q. Ma, A metal-organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. Journal of Materials Chemistry A, 5, 18, p.8385-8393, 2017.
75.Kung, C.W., K. Otake, C.T. Buru, S. Goswami, Y.X. Cui, J.T. Hupp, A.M. Spokoyny, and O.K. Farha, Increased Electrical Conductivity in a Mesoporous Metal-Organic Framework Featuring Metallacarboranes Guests. Journal of the American Chemical Society, 140, 11, p.3871-3875, 2018.
76.Wang, Z.Q., B.X. Wang, Y. Yang, Y.J. Cui, Z.Y. Wang, B.L. Chen, and G.D. Qian, Mixed-Metal-Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in High-Performance Lithium-Sulfur Batteries. Acs Applied Materials & Interfaces, 7, 37, p.20999-21004, 2015.
77.Hendon, C.H., D. Tiana, and A. Walsh, Conductive metal-organic frameworks and networks: fact or fantasy? Physical Chemistry Chemical Physics, 14, 38, p.13120-13132, 2012.
78.Sun, L., M.G. Campbell, and M. Dinca, Electrically Conductive Porous Metal-Organic Frameworks. Angewandte Chemie-International Edition, 55, 11, p.3566-3579, 2016.
79.Talin, A.A., A. Centrone, A.C. Ford, M.E. Foster, V. Stavila, P. Haney, R.A. Kinney, V. Szalai, F. El Gabaly, H.P. Yoon, F. Leonard, and M.D. Allendorf, Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices. Science, 343, 6166, p.66-69, 2014.
80.Wang, T.C., I. Hod, C.O. Audu, N.A. Vermeulen, S.T. Nguyen, O.K. Farha, and J.T. Hupp, Rendering High Surface Area, Mesoporous Metal-Organic Frameworks Electronically Conductive. Acs Applied Materials & Interfaces, 9, 14, p.12584-12591, 2017.
81.Goswami, S., D. Ray, K. Otake, C.W. Kung, S.J. Garibay, T. Islamoglu, A. Atilgan, Y.X. Cui, C.J. Cramer, O.K. Farha, and J.T. Hupp, A porous, electrically conductive hexa-zirconium( IV)metal-organic framework. Chemical Science, 9, 19, p.4477-4482, 2018.
82.Kung, C.W., A.E. Platero-Prats, R.J. Drout, J. Kang, T.C. Wang, C.O. Audu, M.C. Hersam, K.W. Chapman, O.K. Farha, and J.T. Hupp, Inorganic Conductive Glass Approach to Rendering Mesoporous Metal-Organic Frameworks Electronically Conductive and Chemically Responsive. Acs Applied Materials & Interfaces, 10, 36, p.30532-30540, 2018.
83.Lin, S.Y., P.M. Usov, and A.J. Morris, The role of redox hopping in metal-organic framework electrocatalysis. Chemical Communications, 54, 51, p.6965-6974, 2018.
84.Sheberla, D., J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, and M. Dinca, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials, 16, 2, p.220-224, 2017.
85.Ahrenholtz, S.R., C.C. Epley, and A.J. Morris, Solvothermal Preparation of an Electrocatalytic Metalloporphyrin MOF Thin Film and its Redox Hopping Charge-Transfer Mechanism. Journal of the American Chemical Society, 136, 6, p.2464-2472, 2014.
86.Johnson, B.A., A. Bhunia, H.H. Fei, S.M. Cohen, and S. Ott, Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. Journal of the American Chemical Society, 140, 8, p.2985-2994, 2018.
87.Hod, I., W. Bury, D.M. Gardner, P. Deria, V. Roznyatovskiy, M.R. Wasielewski, O.K. Farha, and J.T. Hupp, Bias-Switchable Permselectivity and Redox Catalytic Activity of a Ferrocene-Functionalized, Thin-Film Metal-Organic Framework Compound. Journal of Physical Chemistry Letters, 6, 4, p.586-591, 2015.
88.Lin, S.Y., Y. Pineda-Galvan, W.A. Maza, C.C. Epley, J. Zhu, M.C. Kessinger, Y. Pushkar, and A.J. Morris, Electrochemical Water Oxidation by a Catalyst-Modified Metal-Organic Framework Thin Film. Chemsuschem, 10, 3, p.514-522, 2017.
89.Kung, C.W., T.H. Chang, L.Y. Chou, J.T. Hupp, O.K. Farha, and K.C. Ho, Post metalation of solvothermally grown electroactive porphyrin metal-organic framework thin films. Chemical Communications, 51, 12, p.2414-2417, 2015.
90.Johnson, B.A., A. Bhunia, and S. Ott, Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal-organic framework thin film. Dalton Transactions, 46, 5, p.1382-1388, 2017.
91.Kung, C.W., T.C. Wang, J.E. Mondloch, D. Fairen-Jimenez, D.M. Gardner, W. Bury, J.M. Klingsporn, J.C. Barnes, R. Van Duyne, J.F. Stoddart, M.R. Wasielewski, O.K. Farha, and J.T. Hupp, Metal-Organic Framework Thin Films Composed of Free-Standing Acicular Nanorods Exhibiting Reversible Electrochromism. Chemistry of Materials, 25, 24, p.5012-5017, 2013.
92.Huang, T.Y., C.W. Kung, Y.T. Liao, S.Y. Kao, M.S. Cheng, T.H. Chang, J. Henzie, H.R. Alamri, Z.A. Alothman, Y. Yamauchi, K.C. Ho, and K.C.W. Wu, Enhanced Charge Collection in MOF-525-PEDOT Nanotube Composites Enable Highly Sensitive Biosensing. Advanced Science, 4, 11, 2017.
93.Usov, P.M., B. Huffman, C.C. Epley, M.C. Kessinger, J. Zhu, W.A. Maza, and A.J. Morris, Study of Electrocatalytic Properties of Metal-Organic Framework PCN-223 for the Oxygen Reduction Reaction. Acs Applied Materials & Interfaces, 9, 39, p.33539-33543, 2017.
94.Seo, J.S., D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, and K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature, 404, 6781, p.982-986, 2000.
95.Cohen, S., Modifying MOFs: new chemistry, new materials (vol 1, pg 32, 2010). Chemical Science, 1, 6, p.776-776, 2010.
96.Tanabe, K.K. and S.M. Cohen, Postsynthetic modification of metal-organic frameworks-a progress report. Chemical Society Reviews, 40, 2, p.498-519, 2011.
97.Wang, Z.Q. and S.M. Cohen, Postsynthetic modification of metal-organic frameworks. Chemical Society Reviews, 38, 5, p.1315-1329, 2009.
98.Brozek, C.K. and M. Dinca, Cation exchange at the secondary building units of metal-organic frameworks. Chemical Society Reviews, 43, 16, p.5456-5467, 2014.
99.Deria, P., J.E. Mondloch, O. Karagiaridi, W. Bury, J.T. Hupp, and O.K. Farha, Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. Chemical Society Reviews, 43, 16, p.5896-5912, 2014.
100.Kim, M., J.F. Cahill, H.H. Fei, K.A. Prather, and S.M. Cohen, Postsynthetic Ligand and Cation Exchange in Robust Metal-Organic Frameworks. Journal of the American Chemical Society, 134, 43, p.18082-18088, 2012.
101.Wang, Z.Q., K.K. Tanabe, and S.M. Cohen, Tuning Hydrogen Sorption Properties of Metal-Organic Frameworks by Postsynthetic Covalent Modification. Chemistry-a European Journal, 16, 1, p.212-217, 2010.
102.Wu, C.D., A. Hu, L. Zhang, and W.B. Lin, Homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. Journal of the American Chemical Society, 127, 25, p.8940-8941, 2005.
103.Morris, W., C.J. Doonan, H. Furukawa, R. Banerjee, and O.M. Yaghi, Crystals as molecules: Postsynthesis covalent functionalization of zeolitic imidazolate frameworks. Journal of the American Chemical Society, 130, 38, p.12626-12627, 2008.
104.Marshall, R.J. and R.S. Forgan, Postsynthetic Modification of Zirconium Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 27, p.4310-4331, 2016.
105.Yuan, S., Y.P. Chen, J.S. Qin, W.G. Lu, X. Wang, Q. Zhang, M. Bosch, T.F. Liu, X.Z. Lian, and H.C. Zhou, Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks. Angewandte Chemie-International Edition, 54, 49, p.14696-14700, 2015.
106.Klet, R.C., T.C. Wang, L.E. Fernandez, D.G. Truhlar, J.T. Hupp, and O.K. Farha, Synthetic Access to Atomically Dispersed Metals in Metal-Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal-Exchange Approach. Chemistry of Materials, 28, 4, p.1213-1219, 2016.
107.Yang, D., S.O. Odoh, T.C. Wang, O.K. Farha, J.T. Hupp, C.J. Cramer, L. Gagliardi, and B.C. Gates, Metal-Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000-and UiO-66-Supported Iridium Complexes. Journal of the American Chemical Society, 137, 23, p.7391-7396, 2015.
108.Li, Z.Y., A.W. Peters, A.E. Platero-Prats, J. Liu, C.W. Kung, H. Noh, M.R. DeStefano, N.M. Schweitzer, K.W. Chapman, J.T. Hupp, and O.K. Farha, Fine-Tuning the Activity of Metal-Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. Journal of the American Chemical Society, 139, 42, p.15251-15258, 2017.
109.Snook, G.A., P. Kao, and A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources, 196, 1, p.1-12, 2011.
110.Liang, Z.B., C. Qu, W.H. Guo, R.Q. Zou, and Q. Xu, Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion. Advanced Materials, 30, 37, 2018.
111.Feng, D.W., T. Lei, M.R. Lukatskaya, J. Park, Z.H. Huang, M. Lee, L. Shaw, S.C. Chen, A.A. Yakovenko, A. Kulkarni, J.P. Xiao, K. Fredrickson, J.B. Tok, X.D. Zou, Y. Cui, and Z.A. Bao, Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nature Energy, 3, 1, p.30-36, 2018.
112.Kung, C.W., P.C. Han, C.H. Chuang, and K.C.W. Wu, Electronically conductive metal-organic framework-based materials. Apl Materials, 7, 11, 2019.
113.Micheroni, D., G.X. Lan, and W.B. Lin, Efficient Electrocatalytic Proton Reduction with Carbon Nanotube-Supported Metal-Organic Frameworks. Journal of the American Chemical Society, 140, 46, p.15591-15595, 2018.
114.Pu, Y.J., W.B. Wu, J.Y. Liu, T. Liu, F. Ding, J. Zhang, and Z.Y. Tang, A defective MOF architecture threaded by interlaced carbon nanotubes for high-cycling lithium-sulfur batteries. Rsc Advances, 8, 33, p.18604-18612, 2018.
115.Schulze, H.A., B. Hoppe, M. Schafer, D.P. Warwas, and P. Behrens, Electrically Conducting Nanocomposites of Carbon Nanotubes and Metal-Organic Frameworks with Strong Interactions between the Two Components. Chemnanomat, 5, 9, p.1159-1169, 2019.
116.Ellis, J.E., Z.D. Zeng, S.I. Hwang, S.B. Li, T.Y. Luo, S.C. Burkert, D.L. White, N.L. Rosi, J.J. Gassensmith, and A. Star, Growth of ZIF-8 on molecularly ordered 2-methylimidazole/single-walled carbon nanotubes to form highly porous, electrically conductive composites. Chemical Science, 10, 3, p.737-742, 2019.
117.Jahan, M., Q.L. Bao, and K.P. Loh, Electrocatalytically Active Graphene-Porphyrin MOF Composite for Oxygen Reduction Reaction. Journal of the American Chemical Society, 134, 15, p.6707-6713, 2012.
118.Li, C., T.T. Zhang, J.Y. Zhao, H. Liu, B. Zheng, Y. Gu, X.Y. Yan, Y.R. Li, N.N. Lu, Z.Q. Zhang, and G.D. Feng, Boosted Sensor Performance by Surface Modification of Bifunctional rht-Type Metal-Organic Framework with Nanosized Electrochemically Reduced Graphene Oxide. Acs Applied Materials & Interfaces, 9, 3, p.2984-2994, 2017.
119.Hassan, M.H., R.R. Haikal, T. Hashem, J. Rinck, F. Koeniger, P. Thissen, S. Heissler, C. Woll, and M.H. Alkordi, Electrically Conductive, Monolithic Metal-Organic Framework-Graphene (MOF@G) Composite Coatings. Acs Applied Materials & Interfaces, 11, 6, p.6442-6447, 2019.
120.Fu, J.H., X.Y. Wang, T.T. Wang, J. Zhang, S. Guo, S. Wu, and F.H. Zhu, Covalent Functionalization of Graphene Oxide with a Presynthesized Metal-Organic Framework Enables a Highly Stable Electrochemical Sensing. Acs Applied Materials & Interfaces, 11, 36, p.33238-33244, 2019.
121.Wang, Y.S., Y.C. Chen, J.H. Li, and C.W. Kung, Toward Metal-Organic-Framework-Based Supercapacitors: Room-Temperature Synthesis of Electrically Conducting MOF-Based Nanocomposites Decorated with Redox-Active Manganese. European Journal of Inorganic Chemistry, 26, p.3036-3044, 2019.
122.Kosynkin, D.V., A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, and J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458, 7240, p.872-U5, 2009.
123.Han, M.Y., B. Ozyilmaz, Y.B. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 98, 20, 2007.
124.Kudin, K.N., Zigzag graphene nanoribbons with saturated edges. Acs Nano, 2, 3, p.516-522, 2008.
125.Wang, C.D., Y.S. Li, J.J. Jiang, and W.H. Chiang, Controllable Tailoring Graphene Nanoribbons with Tunable Surface Functionalities: An Effective Strategy toward High-Performance Lithium-Ion Batteries. Acs Applied Materials & Interfaces, 7, 31, p.17441-17449, 2015.
126.Martin, A., J. Hernandez-Ferrer, M.T. Martinez, and A. Escarpa, Graphene nanoribbon-based electrochemical sensors on screen-printed platforms. Electrochimica Acta, 172, p.2-6, 2015.
127.Liu, M.K., W.W. Tjiu, J.S. Pan, C. Zhang, W. Gao, and T.X. Liu, One-step synthesis of graphene nanoribbon-MnO2 hybrids and their all-solid-state asymmetric supercapacitors. Nanoscale, 6, 8, p.4233-4242, 2014.
128.Kung, C.W., Y.S. Li, M.H. Lee, S.Y. Wang, W.H. Chiang, and K.C. Ho, In situ growth of porphyrinic metal-organic framework nanocrystals on graphene nanoribbons for the electrocatalytic oxidation of nitrite. Journal of Materials Chemistry A, 4, 27, p.10673-10682, 2016.
129.Cavka, J.H., S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 130, 42, p.13850-13851, 2008.
130.DeStefano, M.R., T. Islamoglu, J.T. Hupp, and O.K. Farha, Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites. Chemistry of Materials, 29, 3, p.1357-1361, 2017.
131.Ahn, S., N.E. Thornburg, Z.Y. Li, T.C. Wang, L.C. Gallington, K.W. Chapman, J.M. Notestein, J.T. Hupp, and O.K. Farha, Stable Metal-Organic Framework-Supported Niobium Catalysts. Inorganic Chemistry, 55, 22, p.11954-11961, 2016.
132.Li, Z.Y., A.W. Peters, V. Bernales, M.A. Ortuno, N.M. Schweitzer, M.R. DeStefano, L.C. Gallington, A.E. Platero-Prats, K.W. Chapman, C.J. Cramer, L. Gagliardi, J.T. Hupp, and O.K. Farha, Metal-Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature. Acs Central Science, 3, 1, p.31-38, 2017.
133.Noh, H., C.W. Kung, K. Otake, A.W. Peters, Z.Y. Li, Y.J. Liao, X.Y. Gong, O.K. Farha, and J.T. Hupp, Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum Sulfide-Functionalized Metal-Organic Framework. Acs Catalysis, 8, 10, p.9848-9858, 2018.
134.Maindan, K., X.L. Li, J.R. Yu, and P. Deria, Controlling Charge-Transport in Metal-Organic Frameworks: Contribution of Topological and Spin-State Variation on the Iron-Porphyrin Centered Redox Hopping Rate. Journal of Physical Chemistry B, 123, 41, p.8814-8822, 2019.
135.Wang, Y.S., J.L. Liao, Y.S. Li, Y.C. Chen, J.H. Li, W.H. Ho, W.H. Chiang, and C.W. Kung, Zirconium-Based Metal-Organic Framework Nanocomposites Containing Dimensionally Distinct Nanocarbons for Pseudocapacitors. Acs Applied Nano Materials, 3, 2, p.1448-1456, 2020.
136.Furukawa, H., F. Gandara, Y.B. Zhang, J.C. Jiang, W.L. Queen, M.R. Hudson, and O.M. Yaghi, Water Adsorption in Porous Metal-Organic Frameworks and Related Materials. Journal of the American Chemical Society, 136, 11, p.4369-4381, 2014.
137.Deria, P., D.A. Gomez-Gualdron, I. Hod, R.Q. Snurr, J.T. Hupp, and O.K. Farha, Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)zinc(II) MOFs. Journal of the American Chemical Society, 138, 43, p.14449-14457, 2016.
138.Li, Y.S., J.L. Liao, S.Y. Wang, and W.H. Chiang, Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Scientific Reports, 6, 2016.
139.Chiang, W.H., D.N. Futaba, M. Yumura, and K. Hata, Growth control of single-walled, double-walled, and triple-walled carbon nanotube forests by a priori electrical resistance measurement of catalyst films. Carbon, 49, 13, p.4368-4375, 2011.
140.Shimoni, R., W.H. He, I. Liberman, and I. Hod, Tuning of Redox Conductivity and Electrocatalytic Activity in Metal-Organic Framework Films Via Control of Defect Site Density. Journal of Physical Chemistry C, 123, 9, p.5531-5539, 2019.
141.Jabeen, N., Q.Y. Xia, S.V. Savilov, S.M. Aldoshin, Y. Yu, and H. Xia, Enhanced Pseudocapacitive Performance of alpha-MnO2 by Cation Preinsertion. Acs Applied Materials & Interfaces, 8, 49, p.33732-33740, 2016.
142.Zhao, J., Y.Z. Zhang, F. Zhang, H.F. Liang, F.W. Ming, H.N. Alshareef, and Z.Q. Gao, Partially Reduced Holey Graphene Oxide as High Performance Anode for Sodium-Ion Batteries. Advanced Energy Materials, 9, 7, 2019.
143.Wang, S.G., Y.H. Shi, C.Y. Fan, J.H. Liu, Y.F. Li, X.L. Wu, H.M. Xie, J.P. Zhang, and H.Z. Sun, Layered g-C3N4@Reduced Graphene Oxide Composites as Anodes with Improved Rate Performance for Lithium-Ion Batteries. Acs Applied Materials & Interfaces, 10, 36, p.30330-30336, 2018.
144.Feng, D.W., Z.Y. Gu, J.R. Li, H.L. Jiang, Z.W. Wei, and H.C. Zhou, Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal-Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angewandte Chemie-International Edition, 51, 41, p.10307-10310, 2012.
145.Huang, G., R.X. Yuan, Y. Peng, X.F. Chen, S.K. Zhao, S.J. Wei, W.X. Guo, and X. Chen, Oxygen oxidation of ethylbenzene over manganese porphyrin is promoted by the axial nitrogen coordination in powdered chitosan. Rsc Advances, 6, 54, p.48571-48579, 2016.
146.Kim, J., S.W. Rhee, Y.H. Na, K.P. Lee, Y. Do, and S.C. Jeoung, X-ray structure and electrochemical properties of ferrocene-substituted metalloporphyrins. Bulletin of the Korean Chemical Society, 22, 12, p.1316-1322, 2001.
147.Wei, W.F., X.W. Cui, W.X. Chen, and D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chemical Society Reviews, 40, 3, p.1697-1721, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔