(44.192.66.171) 您好!臺灣時間:2021/05/18 00:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳俞尹
研究生(外文):Yu-YinChen
論文名稱:以苯並咪唑衍生物合成金屬有機框架用於氫氣之儲存
論文名稱(外文):Synthesis of metal-organic frameworks based on a benzimidazole derivative for the storage of hydrogen
指導教授:許梅娟許梅娟引用關係
指導教授(外文):Mei-Jywan Syu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:65
中文關鍵詞:金屬有機框架苯並咪唑氫氣儲存
外文關鍵詞:MOFsbenzimidazoleadsorption of H2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
18世紀工業革命後,人口激增與能源危機等全球議題接踵而至,而使得各式替代性能源崛起,其中氫氣能量密度高於其他石化燃料,促成氫氣成為取代化石燃料的明日之星。儲存氫氣則是氫能發展的關鍵,截至目前儲氫方式包含:高壓壓縮氫氣、液態氫氣以及固態型氫氣。而近年則著重固態型材料開發,其材料類別繁多,例如:沸石(zeolite)、碳材(carbon material) 以及金屬有機框架 (metal-organic frameworks, MOFs),有鑑於前述之重點材料,本研究則以自行合成MOFs來進行吸氫探討。
本研究中以自行合成之苯並咪唑 (benzimidazole) 衍生物 (1,3,5-tris(1H-benzo[d]imidazol-2-yl)benzene, TBB) 為前驅物,與鈷離子Co(II) 以溶熱法合成新穎之金屬有機框架Co(II)TBB,並比較不同Co(II):TBB莫爾比例、不同溶劑以及加入第二有機配體 (1,3,5-benzenetricarboxylic acid, BTC),對合成之金屬有機框架之影響,其物化特性則以SEM、FT-IR、UV/Vis、XRD、TGA及BET等儀器分析鑑定得知。
將金屬有機框架填充於管柱中操作流動式吸氫實驗,並繪製氫氣的突破曲線 (breakthrough curve) 以計算氫氣吸附量。嘗試不同操作參數,如:調整管柱長、添加活性碳及零下低溫系統等條件,調整此些參數確實顯著提升氫氣吸附量。此外,亦探討本實驗中穩定性最佳材料CoTPyP之吸氫脫氫重複使用表現,可重複吸氫至少27次,證實其他金屬有機框架穩定性如CoTPyP般穩固,則其氫氣重複再使用極具潛力。
Metal-organic frameworks (MOFs) are functional porous coordination polymers which are constructed from metal ion and organic ligand. Due to high surface area, pore tunability, structural diversity and ease of modification, the MOFs are suitable to apply on the gas storage.
In this work, apply the benzimidazole derivative, 1,3,5-tris(1H-benzo[d]imidazol-2-yl)benzene (TBB), to synthesize Co(II)TBB MOF by solvothermal method. Try the difference synthesis parameters such as molar ration of Co(II) and TBB, solvent, and secondary organic ligand 1,3,5-benzenetricarboxylic acid (BTC), respectively, were used to discuss the effects on the BET surface area of Co(II)TBB. The characteristics of Co(II)TBB were analyzed by FT-IR, UV/Vis, SEM, XRD, TGA and BET. In detail, FT-IR spectra conformed that the TBB coordinated with the Co(II). SEM images and XRD pattern revealed that morphology and crystallinity of difference the parameters of Co(II)TBB. Among them, as-synthesized Co(II)TBB which was used the DMSO as the solvent to is the highest one surface area (92 m2/g) in this system.
The ability of Co(II)TBB for H2 uptake was investigated by hand-made packed column system. The H2 uptake capacity of Co(II)TBB was 0.50 wt%, 2.50 mmol/g STP at 277K. In order to increase the H2 uptake, try the several parameters, such as the column length, adding AC and low temperature system. In result, enhance the column length to 20 cm, the H2 uptake was 0.54 wt%, 2.70 mmol/g STP at 277K. Adding the AC into Co(II)TBB, the H2 uptake was 0.68 wt%, 3.40 mmol/g STP at 277K. Take the Co(II)TBB and AC mixture pack at the new low temperature system, the H2 uptake was 1.86 wt%, 9.44 mmol/g at 223K.
中文摘要 I
Extended Abstract II
致謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1-1 前言 1
1-1-1 能源危機 (Energy crisis) 及全球暖化 (global warming) 1
1-1-2 金屬有機框架 (Metal-organic frameworks, MOFs) 1
1-1-3 研究動機與目的 2
第二章 文獻回顧 3
2-1 儲氫技術的發展及現況 3
2-1-1 壓縮儲氫 (Compressed hydrogen storage) 3
2-1-2 液態儲氫 (Liquid hydrogen storage) 4
2-1-3 固態儲氫 (Solid-state hydrogen storage) 4
2-2 金屬有機框架 5
2-2-1 金屬有機框架組成元件 6
2-2-2 金屬有機框架之結構 8
2-3 金屬有機框架之合成方法 9
2-4 金屬有機框架之應用 13
2-4-1 氣體儲存與純化分離 (Gas storage, purification and separation) 13
2-4-2 藥物載體 (Drug delivery) 14
2-4-3 感測 (Sensor) 15
2-4-4 電子材料 (Electronic materials) 15
2-4-5 催化 (Catalysis) 16
第三章 實驗方法、材料與儀器 19
3-1 有機配體1,3,5-tris(1H-benzo[d]imidazol-2-yl)benzene (TBB) 之製備 19
3-1-1 有機配體TBB之合成 19
3-1-2 有機配體TBB粗產物 20
3-1-3 有機配體TBB之純化 20
3-2 金屬有機框架CoTBB之合成 20
3-2-1 金屬有機框架CoTBB粗產物 20
3-2-2 金屬有機框架CoTBB粗產物之再結晶 20
3-2-3 金屬與有機配體比例對ZnTBB金屬有機框架之影響 20
3-2-4 合成溶劑對CoTBB金屬有機框架之影響 20
3-2-5 混摻第二有機配體1,3,5-benzenetricarboxylic acid (BTC) 21
3-3 填充管柱進流氣體吸附 21
3-3-1 MOFs填充管柱進流氣體吸附 21
3-3-2 MOFs/ 活性碳(AC) 混合材料填充管柱進流氣體吸附 22
3-3-3 MOFs低溫系統進流氣體吸附 22
3-3-4 MOFs再使用性進流氣體吸附 22
3-4 實驗藥品 24
3-5 實驗儀器 25
第四章結果與討論 26
4-1 有機配體1,3,5-tris(1H-benzo[d]imidazol-2-yl)benzene (TBB) 之分析 26
4-1-1 TBB之1H NMR圖譜分析 26
4-1-2 TBB之FT-IR圖譜分析 28
4-1-3 TBB之質譜儀 (MS) 分析 29
4-1-4 TBB之單晶結構分析 29
4-1-5 TBB之紫外/可見光 (UV/Vis) 光譜以及螢光 (fluorescence) 光譜之特性 31
4-2金屬有機框架之合成與分析 32
4-2-1 SEM影像之Co(II)TBB表面型態分析 33
4-2-2 紫外/可見光 (UV/Vis) 分光光度計對Co(II)TBB之吸光度測定 33
4-2-3 XRD圖譜分析 34
4-2-4 熱重分析 35
4-2-5 傅立葉轉換紅外線光譜 (FT-IR) 之官能基分析 36
4-2-6 比表面積測定與孔洞分析 36
4-3 穩定性測試 38
4-3-1 熱穩定性測試 38
4-3-2 光穩定性測試 39
4-3-3 水穩定性測試 40
4-4不同合成參數對Co(II)TBB結晶性與比表面積之影響 41
4-4-1 使用不同金屬與有機配體比例合成金屬有機框架 41
4-4-2 使用不同合成溶劑金屬有機框架 44
4-4-3 混摻第二有機配體1,3,5-benzenetricarboxylic acid (BTC) 47
4-5金屬有機框架Co(II)TBB之應用 51
4-5-1 填充管柱進流氣體吸附 51
第五章結論 60
參考文獻 61
參考文獻
1.L Pérez-Lombard, J Ortiz, C Pout. A review on buildings energy consumption information. Energy and Buildings 40, 394–398, 2008.
2.KK Gangu, S Maddila, SB Mukkamala, SB Jonnalagadda. Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: a review. Journal of Energy Chemistry 30, 132–144, 2019.
3.U Eberle, M Felderhoff, F Schuth. Chemical and physical solutions for hydrogen storage. Angewandte Chemie International Edition 48, 6608–6630, 2009.
4.JW Ren, X Dyosiba, NM Musyoka, HW Langmi, M Mathe, SJ Liao. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coordination chemistry reviews 352, 187–219, 2017.
5.HM Cheng, QH Yang, C Liu. Hydrogen storage in carbon nanotubes. Carbon 39, 1447–1454, 2001.
6.L Schlapbach, A Züttel. Hydrogen-storage materials for mobile applications. Nature 414, 353–358, 2001.
7.E Tzimas, C Filiou, SD Peteves, JB Veyret. Hydrogen Storage: state-of-the-art and future perspective. Institute for Energy, D.G. J.R.C., The Netherlands, 29–75, 2003.
8.A Lanz, J Heffel, C Messer. Hydrogen Fuel Cell Engines and Related Technologies. College of the Desert, Palm Desert, CA, USA, 1–24, 2001.
9.HT Hwang, A Varma. Hydrogen storage for fuel cell vehicles. Current Opinion in Chemical Engineering 5, 42–48, 2014.
10.DJ Durbin, C Malardier-Jugroot. Review of hydrogen storage techniques for on board vehicle applications. International Journal of Hydrogen Energy 38, 14595–14617, 2013.
11.H Furukawa, KE Cordova, M O' Keeffe, OM Yaghi. The chemistry and applications of metal-organic frameworks. Science 341, 1230444, 2013.
12.OK Farha, I Eryazici, NC Jeong, BG Hauser, CE Wilmer, AA Sarjeant, RQ Snurr, ST Nguyen, AÖ Yazaydın, JT Hupp. Metal-organic framework materials with ultrahighsurface areas: is the sky the limit. Journal of the American Chemical Society 134, 15016−15021, 2012.
13.MJ Kalmutzki, N Hanikel, OM Yaghi. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Science Advances 4, 1–16, 2018.
14.TR Cook, YR Zheng, PJ Stang. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chemical Reviews 113, 734–777, 2013.
15.S Kitagawa, R Kitaura, SI Noro. Functional porous coordination polymers. Angewandte Chemie International Edition 43, 2334–2375, 2004.
16.ML Foo, R Matsuda, S Kitagawa. Functional hybrid porous coordination polymers. Chemistry of Materials 26, 310–472, 2014.
17.YR Lee, J Kim, WS Ahn. Synthesis of metal-organic frameworks: a mini review. Korean Journal of Chemical Engineering 30, 1667–1680, 2013.
18.J Kim, SH Kim, ST Yang, WS Ahn. Bench-scale preparation of Cu3(BTC)2 by ethanol reflux: Synthesis optimization and adsorption/catalytic applications. Microporous and Mesoporous Materials 161, 48–55, 2012.
19.K Sumida, S Horike, SS Kaye, ZR Herm, WL Queen, CM Brown, F Grandjean, GJ Long, A Daillyf, JR Long. Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal-organic framework (Fe-BTT) discovered via high-throughput methods. Chemical Science 1, 184–191, 2010.
20.SH Jhung, JH Lee, JS Chang. Microwave synthesis of a nanoporous hybrid material, chromium trimesate. Bulletin of the Korean Chemical Society 26, 880–881, 2005.
21.WJ Son, J Kim, J Kim, WS Ahn. Sonochemical synthesis of MOF-5. Chemical Communications, 6336–6338, 2008
22.U Mueller, M Schubert, F Teich, H Puetter, K Schierle-Arndt, J Pastre. Metal-orgnic frameworks-prospective industrial applications. Journal of Materials Chemistry 16, 626–636, 2006.
23.R Li, XQ Ren, HW Ma, X Feng, ZG Lin, XG Li, CW Hu, B Wang. Nickel-substituted zeolitic imidazolate frameworks for time-resolved alcohol sensing and photocatalysis under visible light. Journal of Materials Chemistry A 2, 5724–5729, 2014.
24.KJ Kim, YJ Li, PB Kreider, CH Chang, N Wannenmacher, PK Thallapallyc, HG Ahn. High-rate synthesis of Cu–BTC metal-organic frameworks. Chemical Communications 49, 11518–11520, 2013.
25.A Carné-Sánchez, I Imaz, M Cano-Sarabia, D Maspoch. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. Nature Chemistry 5, 203–211, 2013.
26.K Otsubo, T Haraguchi, O Sakata, A Fujiwara, H Kitagawa. Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction. Journal of the American Chemical Society 134, 9605–9608, 2012.
27.JR Li, RJ Kuppler, HC Zhou. Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews 38, 1477–1504, 2009.
28.JLC Rowsell, OM Yaghi. Strategies for hydrogen storage in metal-organic frameworks. Angewandte Chemie International Edition 44, 4670–4679, 2005.
29.MT Kapelewski, T Runcevski, JD Tarver, HZH Jiang, K Hurst, PA Parilla, A Ayala, T Gennett, SAF Gerald, CM Brown, JR Long. Record hgh hydrogen storage capacity in the metal-organic framework Ni2(m‑dobdc) at near-ambient temperatures. Chemistry of Materials 30, 8179–8189, 2018.
30.RM Abhang, KS Wani, VS Patil, SH Sonawane. Perspectives and challenges of hydrogen Storage by metal-organic frameworks. International Journal of Science, Spirituality, Business and Technology 2, 2277–7261, 2013.
31.DF Sun, SQ Ma, YX Ke, DJ Collins, HC Zhou. An interweaving MOF with high hydrogen uptake. Journal of the American Chemical Society 128, 3896–3897, 2006.
32.B Wang, AP Côté, H Furukawa, M O' Keeffe, OM Yaghi. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211, 2008.
33.D Britt, H Furukawa, B Wang, TG Glover, OM Yaghi. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. PNAS 106, 20637–20640, 2009.
34.Y Wang, JH Yan, NH Wen, HJ Xiong, SD Cai, QY He, YQ Hu, DM Peng, ZB Liu, YF Liu. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 230, 119619, 2020.
35.DD Wang, JJ Zhou, RH Shi, HH Wu, RH Chen, BV Duan, GL Xia, PP Xu, H Wang, S Zhou, CM Wang, HB Wang, Z Guo, QW Chen. Biodegradable core-shell dual-metal-organic frameworks nanotheranostic agent for multiple imaging guided combination cancer therapy. Theranostics 7, 4605–4617, 2017.
36.Y Takashima, VM Martínez, S Furukawa, M Kondo, S Shimomura, H Uehara, M Nakahama, K Sugimoto, S Kitagawa. Molecular decoding using luminescence from an entangled porous framework. Nature Communications 2, 168-176, 2011.
37.FY Yi, Y Wang, JP Li, D Wu, YQ Lan, ZM Sun. An ultrastable porous metal-organic framework luminescent switch towards aromatic compounds. Materials Horizons 2, 245–251, 2015.
38.KM Choi, HM Jeong, JH Park, YB Zhang, JK Kang, OM Yaghi. Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 8, 7451–7457, 2014.
39.JY Cheng, SM Chen, D Chen, L Dong JJ Wang, TL Zhang, TP Jiao, et al. Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal–organic framework/ reduced graphene oxide self-assembled papers. Journal of Materials Chemistry A 6, 20254–20266, 2018.
40.DK Wang, RK Huang, WJ Liu, DR Sun, ZH Li. Fe-Based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catalysis 4, 4254–4260, 2014.
41.J Xu, J Liu, Z Li, XB Wang, Z Wang. Synthesis, structure and properties of Pd@MOF-808. Journal of Materials Science 54, 12911–12924, 2019.
42.HY Cho, DA Yang, J Kim, SY Jeong, WS Ahn. CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catalysis Today 185, 35–40, 2012.
43.L Jiao, YX Zhou, HL Jiang. Metal-organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chemical Science 7, 1690–1695, 20126
44.N Kornienko, YB Zhao, CS Kley, CH Zhu, DY Kim, S Lin, CJ Chang, OM Yaghi, PD Yang. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. Journal of the American Chemical Society 137, 14129–14135, 2015.
45.王衍霖。以苯並咪唑衍生物合成金屬有機框架用於二氧化碳吸附與催化。國立成功大學化工系碩士學位論文,2018.
46.林冠文。以四吡啶基卟吩合成金屬有機結構物之製備、鑑定與應用。國立成功大學化工系碩士學位論文,2016.
47.郭茹雪。以三嗪衍生物合成金屬有機框架用於二氧化碳吸附與催化。國立成功大學化工系碩士學位論文,2019.
48.JF Xiong, SH Luo, JP Huo, JYa Liu, SX Chen, ZY Wang. Design, synthesis, and characterization of 1,3,5- Tri(1H‑benzo[d]imidazol-2-yl)benzene-based fluorescent supramolecular columnar liquid crystals with a broad mesomorphic range. The Journal of Organic Chemistry 79, 8366–8373, 2014.
49.JF Xiong, JX Li, G-Z Mo, J-P Huo, JY Liu, XY Chen, ZY Wang. Benzimidazole derivatives: selective fluorescent chemosensors for the picogram detection of picric acid. The Journal of Organic Chemistry 79, 11619–11630, 2014.
50.HJ Choi, M Dincâ, JR Long. Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate). Journal of the American Chemical Society 130, 7848–7850, 2008.
51.T Wang, HK Kim, YJ Liu, WW Li, JT Griffiths, Y Wu, S Laha, KD Fong, F Podjaski, C Yun, RV Kumar, BV Lotsch, AK Cheetham, SK Smoukov. Bottom-up formation of carbon-based structures with multilevel hierarchy from MOF-guest polyhedra. Journal of the American Chemical Society 140, 6130–6136, 2018.
52.J Samios, VA Durov. Novel approaches to the structure and dynamics of liquids: experiments, theories and simulations. Kluwer Academic Publishers, Netherlands, 2004.
53.TW Li , ZX Jiang , CL Xu , Bo Liu , GH Liu , PF Wang , Xin Li , WT Chen , CX Ning , Z Wang . Effect of pore structure on shale oil accumulation in the lower third member of the Shahejie formation, Zhanhua Sag, eastern China: evidence from gas adsorption and nuclear magnetic resonance. Marine and Petroleum Geology 88, 932–949, 2017.
54.YY Liu, SQ Liu, AAS Gonçalves, M Jaroniec. Effect of metal-ligand ratio on the CO2 adsorption properties of Cu–BTC metal–organic frameworks. RSC Advances 8, 35551–35556, 2018.
55.R Yan, Y Zhao, H Yang, XJ Kang, C Wang, LLWen, ZD Lu. Ultrasmall Au nanoparticles embedded in 2D mixed-ligand metal-organic framework nanosheets exhibiting highly efficient and size-selective catalysis. Advanced Functional Materials 28, 932–949, 2018.
56.A Schaate, P Roy, A Godt, J Lippke, F Waltz, M Wiebcke, P Behrens. Modulated Synthesis of Zr-Based Metal–Organic Frameworks: From Nano to Single Crystal. Chemistry—A European Journal 17, 6643–6651, 2011.
57.T Tsuruoka, S Furukawa, Y Takashima, K Yoshida, S Isoda, S Kitagawa. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angewandte Chemie International Edition 48, 4739–4743, 2009.
58.K Koh, AG Wong-Foy, A J Matzger. A crystalline mesoporous coordination copolymer with high microporosity. Angewandte Chemie International Edition 47, 677–680, 2008.
59.J Xu, J Liu, Z Li, XB Wang, YF Xu, SS Chen, Z Wang. Optimized synthesis of Zr(IV) metal organic frameworks (MOFs-808) for efficient hydrogen storage. New Journal of Chemistry43, 4029–4099, 2019.
60.QL Zhu, W Xia, T Akita, RQ Zou, Q Xu. Metal-organic framework-derived honeycomb-like open Porous Nanostructures as Precious-Metal-Free Catalysts for Highly Effi cient Oxygen Electroreduction. Advanced Materials 28, 6391–6398, 2016.
61.MT Kapelewski, SJ Geier, MR Hudson, D Stück, JA Mason, JN Nelson, DJ Xiao, Z Hulvey, E Gilmour, SA FitzGerald, M Head-Gordon, CM Brown, JR Long. M2(m‑dobdc) (M = Mg, Mn, Fe, Co, Ni) metal-organic frameworks exhibiting increased charge density and enhanced H2 binding at the open metal sites. Journal of the American Chemical Society 136, 12119–12129, 2014.
62.MP Suh, HJ Park, TK Prasad, DW Lim. Hydrogen storage in metal-organic frameworks. Chemical Reviews 112, 782–835, 2012.
63.YW Li, RT Yang. Hydrogen Storage in Metal-organic frameworks by bridged hydrogen spillover. Journal of the American Chemical Society 128, 8136–8137, 2006.
64.H Patel. Fixed‑bed column adsorption study: a comprehensive review. Applied Water Science 9, 45–62, 2019.
65.M Mohan, VK Sharma, EA Kumar, V Gayathri. Hydrogen storage in carbon materials—a reviewr. Energy Storage 1, e35–e50, 2019.
66.XQ Wang, P Wang, P Ning, YX Ma, F Wang, X L Guo, Y Lan. Adsorption of gaseous elemental mercury with activated carbon impregnated with ferric chloride. RSC Advances 5, 24899–24907, 2015.
67.R Li, SJ Chong, N Altaf, YS Gao, B Louis, Q Wang. Synthesis of ZSM-5/siliceous zeolite composites for improvement of hydrophobic adsorption of volatile organic compounds. Frontiers in Chemistry 7, 505–515, 2019.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top