(3.235.245.219) 您好!臺灣時間:2021/05/07 21:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張哲維
研究生(外文):Che-WeiChang
論文名稱:鑭鋁系波洛斯凱特與鎢酸鈉觸媒於甲烷氧化耦合之動力學研究
論文名稱(外文):Kinetics of the oxidative coupling of methane over perovskite-type lanthanum aluminate and sodium tungstate catalysts
指導教授:林裕川林裕川引用關係
指導教授(外文):Yu-Chuan Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:85
中文關鍵詞:甲烷氧化耦合波洛斯凱特鎢酸鈉動力學
外文關鍵詞:methaneoxidative couplingperovskitesodium tungstatekinetics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究著眼於比較鑭鋁波洛斯凱特觸媒與鎢酸鈉觸媒於甲烷氧化耦合反應之動力學分析。從反應結果可以發現,使用鑭鋁波洛斯凱特觸媒進行甲烷氧化耦合時,甲烷轉化率隨溫度上升而增加的趨勢相較於鎢酸鈉觸媒較為和緩,推測鑭鋁波洛斯凱特觸媒較鎢酸鈉觸媒具有更低的C-H鍵截斷的活化能。在二碳產物方面,於高溫(750°C以上)、固定質量空間流速的條件下,鎢酸鈉觸媒之乙烯選擇率隨進料之CH4/O2比增加而上升的趨勢較明顯,而乙烷選擇率上升的趨勢則較小,於固定CH4/O2比並逐漸提高溫度時,可以發現鎢酸鈉觸媒之乙烷選擇率隨溫度上升而減少的趨勢相較於鑭鋁波洛斯凱特觸媒較為明顯。因此,推測鎢酸鈉觸媒較鑭鋁波洛斯凱特觸媒更容易受溫度影響促進乙烷脫氫生成乙烯。為了更深入了解兩觸媒之間的差異,本論文進行動力學分析,反應機制考慮了乙烷、乙烯、一氧化碳、二氧化碳的生成,且包含非均相的觸媒表面反應以及均相的氣相反應,透過擬合實驗數據獲取動力學參數,發現鑭鋁波洛斯凱特觸媒較鎢酸鈉觸媒具有更低的C-H鍵截斷的活化能(180.8 kJ/mol),而於乙烷脫氫生成乙烯之反應,鑭鋁波洛斯凱特觸媒亦有較低的活化能(333.7 kJ/mol)。
This study developed a kinetic model of the oxidative coupling of methane over perovskite-type lanthanum aluminate and sodium tungstate catalysts. According to the catalytic results, we found that the methane conversion of LaAlO3 increased milder than Mn-Na2WO4/SiO2 with increasing temperature. It might be due to lower C-H bond activation energy of LaAlO3. We also found that in the case of C2 products, the ethylene selectivity of Mn-Na2WO4/SiO2 increased more significant than LaAlO3 with increasing CH4/O2 ratio at a given WHSV and high temperature (〉 750°C). Increased temperature at a fixed CH4/O2 ratio resulted in reducing of ethane selectivity where Mn-Na2WO4/SiO2 showed significant trend. Therefore, comparing to LaAlO3, we suggested that Mn-Na2WO4/SiO2 was easier to be affected by temperature to promote the dehydrogenation of ethane to ethylene. In order to gain an in-depth understanding of these two catalysts, kinetic analysis has been performed. The reaction mechanism considered the formation of ethylene, ethane, carbon monoxide and carbon dioxide, including homogeneous gas-phase reaction and heterogeneous surface reaction. The kinetic parameters was estimated via nonlinear regression. The results showed that LaAlO3 had a lower activation energy of methane (180.8 kJ/mol) and a lower activation energy of ethane dehydrogenation (333.7 kJ/mol).
摘要 i
英文延伸摘要 ii
誌謝 vii
目錄 viii
表目錄 x
圖目錄 xi
第一章 前言 1
1.1 引言 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1 烯烴的生產技術 4
2.2 甲烷氧化耦合反應機制 6
2.3 甲烷於異相觸媒催化之探討 11
2.4 波洛斯凱特觸媒之特性 14
2.5 鎢酸鈉觸媒之特性 18
第三章 實驗儀器與實驗方法 19
3.1 X光繞射儀 19
3.2 氣相層析儀 21
3.2.1 氣相產物定性與定量 24
3.3 實驗藥品與實驗設備 28
3.4 觸媒製備與合成 30
3.4.1 鑭鋁波洛斯凱特觸媒合成 30
3.4.2 鎢酸鈉觸媒合成 31
3.5 觸媒反應性測試 32
第四章 實驗結果與討論 33
4.1 觸媒之XRD繞射結果 33
4.2 甲烷氧化耦合之反應性測試 35
4.3 動力學模型建立 46
4.4 動力學模型探討 52
第五章 結論 65
第六章 附錄 66
6.1 甲烷氧化耦合模型擬合所需之實驗數據 66
6.2 反應性測試之GC圖譜 72
6.3 Athena Visual Studio code 73
參考文獻 77
[1]A. I. Olivos-Suarez, A. g. Szécsényi, E. J. Hensen, J. Ruiz-Martinez, E. A. Pidko, and J. Gascon, Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: challenges and opportunities, ACS Catalysis, vol. 6, no. 5, pp. 2965-2981, 2016.
[2]Y. Gambo, A. Jalil, S. Triwahyono, and A. Abdulrasheed, Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review, Journal of Industrial and Engineering Chemistry, vol. 59, pp. 218-229, 2018.
[3]D. H. Choi, S. M. Chun, S. H. Ma, and Y. C. Hong, Production of hydrogen-rich syngas from methane reforming by steam microwave plasma, Journal of Industrial and Engineering Chemistry, vol. 34, pp. 286-291, 2016.
[4]X. Li, D. Li, H. Tian, L. Zeng, Z.-J. Zhao, and J. Gong, Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles, Applied Catalysis B: Environmental, vol. 202, pp. 683-694, 2017.
[5]I. Amghizar, L. A. Vandewalle, K. M. Van Geem, and G. B. Marin, New trends in olefin production, Engineering, vol. 3, no. 2, pp. 171-178, 2017.
[6]Y. Gao et al., Recent Advances in Intensified Ethylene Production—A Review, ACS Catalysis, vol. 9, no. 9, pp. 8592-8621, 2019.
[7]E. Nduagu, H. Rahmanifard, A. Sow, and K. Mascarenhas, Economic Impacts and Market Challenges for the Methane to Derivatives Petrochemical Sub-Sector. 2018.
[8]VERISK. (2020). Ethylene Global Supply Demand Analytics Service [Online]. Available: https://www.woodmac.com/news/editorial/ethylene-global-supply-demand-analytics-service/.
[9]C. Karakaya, H. Zhu, C. Loebick, J. G. Weissman, and R. J. Kee, A detailed reaction mechanism for oxidative coupling of methane over Mn/Na2WO4/SiO2 catalyst for non-isothermal conditions, Catalysis Today, vol. 312, pp. 10-22, 2018.
[10]X. Fang, S. Li, J. Lin, and Y. Chu, Oxidative coupling of methane on W–Mn catalysts, Journal of Molecular Catalysis, vol. 6, no. 6, pp. 427-433, 1992.
[11]I. Kim, G. Lee, H. B. Na, J.-M. Ha, and J. C. Jung, Selective oxygen species for the oxidative coupling of methane, Molecular Catalysis, vol. 435, pp. 13-23, 2017.
[12]T. Ren, M. Patel, and K. Blok, Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes, Energy, vol. 31, no. 4, pp. 425-451, 2006.
[13]C. D. Chang and A. J. Silvestri, The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts, Journal of Catalysis, vol. 47, no. 2, pp. 249-259, 1977.
[14]F. J. Keil, Methanol-to-hydrocarbons: process technology, Microporous and Mesoporous Materials, vol. 29, no. 1-2, pp. 49-66, 1999.
[15]J. Q. Chen, A. Bozzano, B. Glover, T. Fuglerud, and S. Kvisle, Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process, Catalysis Today, vol. 106, no. 1-4, pp. 103-107, 2005.
[16]D. Chen, K. Moljord, and A. Holmen, A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts, Microporous and Mesoporous Materials, vol. 164, pp. 239-250, 2012.
[17]H. Schulz, Short history and present trends of Fischer–Tropsch synthesis, Applied Catalysis A: General, vol. 186, no. 1-2, pp. 3-12, 1999.
[18]M. E. Dry, The fischer–tropsch process: 1950–2000, Catalysis Today, vol. 71, no. 3-4, pp. 227-241, 2002.
[19]J. Y. Lee et al., Scaled-up production of C2 hydrocarbons by the oxidative coupling of methane over pelletized Na2WO4/Mn/SiO2 catalysts: Observing hot spots for the selective process, Fuel, vol. 106, pp. 851-857, 2013/04/01/ 2013.
[20]J. H. Lunsford, The Catalytic Oxidative Coupling of Methane, Angewandte Chemie International Edition in English, vol. 34, no. 9, pp. 970-980, 1995/05/15 1995.
[21]B. Beck et al., Oxidative coupling of methane-A complex surface/gas phase mechanism with strong impact on the reaction engineering, Catalysis Today, vol. 228, pp. 212-218, 2014/06/01/ 2014.
[22]Z. Gao and Y. Ma, Direct oxidation of methyl radicals in OCM process deduced from correlation of product selectivities, Journal of Natural Gas Chemistry, vol. 19, no. 5, pp. 534-538, 2010/09/01/ 2010.
[23]J. W. Thybaut, J. Sun, L. Olivier, A. C. Van Veen, C. Mirodatos, and G. B. Marin, Catalyst design based on microkinetic models: Oxidative coupling of methane, Catalysis Today, vol. 159, no. 1, pp. 29-36, 2011/01/10/ 2011.
[24]J. Sun, J. W. Thybaut, and G. B. Marin, Microkinetics of methane oxidative coupling, Catalysis Today, vol. 137, no. 1, pp. 90-102, 2008/08/30/ 2008.
[25]N. A. S. Amin and S. E. Pheng, Influence of process variables and optimization of ethylene yield in oxidative coupling of methane over Li/MgO catalyst, Chemical Engineering Journal, vol. 116, no. 3, pp. 187-195, 2006/03/01/ 2006.
[26]K. Takanabe and E. Iglesia, Mechanistic Aspects and Reaction Pathways for Oxidative Coupling of Methane on Mn/Na2WO4/SiO2 Catalysts, The Journal of Physical Chemistry C, vol. 113, no. 23, pp. 10131-10145, 2009/06/11 2009.
[27]Y. S. Su, J. Y. Ying, and W. H. Green, Upper bound on the yield for oxidative coupling of methane, Journal of Catalysis, vol. 218, no. 2, pp. 321-333, 2003/09/10/ 2003.
[28]W. Y. Tung and L. L. Lobban, Oxidative coupling of methane over lithium/magnesia: kinetics and mechanisms, Industrial & Engineering Chemistry Research, vol. 31, no. 7, pp. 1621-1625, 1992/07/01 1992.
[29]S. J. Korf, J. A. Roos, J. A. Vreeman, J. W. H. C. Derksen, J. G. van Ommen, and J. R. H. Ross, A study of the kinetics of the oxidative coupling of methane over a Li/Sn/MgO catalyst, Catalysis Today, vol. 6, no. 4, pp. 417-426, 1990/02/01/ 1990.
[30]Z. Taheri, N. Seyed-Matin, A. A. Safekordi, K. Nazari, and S. Z. Pashne, A comparative kinetic study on the oxidative coupling of methane over LSCF perovskite-type catalyst, Applied Catalysis A: General, vol. 354, no. 1, pp. 143-152, 2009/02/15/ 2009.
[31]S. C. Oh, Y. Lei, H. Chen, and D. Liu, Catalytic consequences of cation and anion substitutions on rate and mechanism of oxidative coupling of methane over hydroxyapatite catalysts, Fuel, vol. 191, pp. 472-485, 2017/03/01/ 2017.
[32]S. C. Reyes, E. Iglesia, and C. P. Kelkar, Kinetic-transport models of bimodal reaction sequences—I. Homogeneous and heterogeneous pathways in oxidative coupling of methane, Chemical Engineering Science, vol. 48, no. 14, pp. 2643-2661, 1993/07/01/ 1993.
[33]M. Y. Sinev, Elementary steps of radical-surface interactions in oxidative coupling of methane, Catalysis Today, vol. 13, no. 4, pp. 561-564, 1992/04/06/ 1992.
[34]M. Y. Sinev, Z. T. Fattakhova, V. I. Lomonosov, and Y. A. Gordienko, Kinetics of oxidative coupling of methane: Bridging the gap between comprehension and description, Journal of Natural Gas Chemistry, vol. 18, no. 3, pp. 273-287, 2009/09/01/ 2009.
[35]Q. Chen, P. M. Couwenberg, and G. B. Marin, Effect of pressure on the oxidative coupling of methane in the absence of catalyst, AIChE Journal, Article vol. 40, no. 3, pp. 521-535, 1994.
[36]Z. Stansch, L. Mleczko M, and Baerns, Comprehensive Kinetics of Oxidative Coupling of Methane over the La2O3/CaO Catalyst, Industrial and Engineering Chemistry Research, Article vol. 36, no. 7, pp. 2568-2579, 1997.
[37]S. M. K. Shahri and S. M. Alavi, Kinetic studies of the oxidative coupling of methane over the Mn/Na2WO4/SiO2 catalyst, Journal of Natural Gas Chemistry, vol. 18, no. 1, pp. 25-34, 2009/03/01/ 2009.
[38]M. R. Lee, M.-J. Park, W. Jeon, J.-W. Choi, Y.-W. Suh, and D. J. Suh, A kinetic model for the oxidative coupling of methane over Na2WO4/Mn/SiO2, Fuel Process. Technol., vol. 96, pp. 175-182, 2012.
[39]T. Ito, J. Wang, C. H. Lin, and J. H. Lunsford, Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst, Journal of the American Chemical Society, vol. 107, no. 18, pp. 5062-5068, 1985/09/01 1985.
[40]S. Arndt et al., Li-doped MgO From Different Preparative Routes for the Oxidative Coupling of Methane, Topics in Catalysis, vol. 54, no. 16, p. 1266, 2011/09/09 2011.
[41]S. J. Korf, J. A. Roos, N. A. de Bruijn, J. G. van Ommen, and J. R. H. Ross, Oxidative coupling of methane over lithium doped magnesium oxide catalysts, Catalysis Today, vol. 2, no. 5, pp. 535-545, 1988/04/01/ 1988.
[42]S. Arndt, T. Otremba, U. Simon, M. Yildiz, H. Schubert, and R. Schomäcker, Mn–Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known?, Applied Catalysis A: General, vol. 425-426, pp. 53-61, 2012/05/28/ 2012.
[43]T. W. Elkins, B. Neumann, M. Bäumer, and H. E. Hagelin-Weaver, Effects of Li Doping on MgO-Supported Sm2O3 and TbOX Catalysts in the Oxidative Coupling of Methane, ACS Catalysis, vol. 4, no. 6, pp. 1972-1990, 2014/06/06 2014.
[44]H. Habibpoor, M. Taghizadeh, and F. Raouf, Oxidative coupling of methane over Li/MgO catalysts prepared by sol-gel and impregnation methods, Inorganic and Nano-Metal Chemistry, vol. 47, no. 10, pp. 1449-1456, 2017/10/03 2017.
[45]M. Yildiz et al., Support material variation for the MnxOy-Na2WO4/SiO2 catalyst, Catalysis Today, vol. 228, pp. 5-14, 2014.
[46]N. S. Hayek, G. J. Khlief, F. Horani, and O. M. Gazit, Effect of reaction conditions on the oxidative coupling of methane over doped MnOx-Na2WO4/SiO2 catalyst, Journal of Catalysis, vol. 376, pp. 25-31, 2019.
[47]V. R. Choudhary, B. S. Uphade, and S. A. R. Mulla, Oxidative Coupling of Methane over a Sr-Promoted La2O3 Catalyst Supported on a Low Surface Area Porous Catalyst Carrier, Industrial & Engineering Chemistry Research, vol. 36, no. 9, pp. 3594-3601, 1997/09/01 1997.
[48]M. Haneda, Y. Katsuragawa, Y. Nakamura, and A. Towata, Promoting Effect of Cerium Oxide on the Catalytic Performance of Yttrium Oxide for Oxidative Coupling of Methane, (in English), Frontiers in Chemistry, Original Research vol. 6, no. 581, 2018-November-22 2018.
[49]Y. Zeng, F. T. Akin, and Y. S. Lin, Oxidative coupling of methane on fluorite-structured samarium–yttrium–bismuth oxide, Applied Catalysis A: General, vol. 213, no. 1, pp. 33-45, 2001/05/14/ 2001.
[50]R. Spinicci, P. Marini, S. De Rossi, M. Faticanti, and P. Porta, Oxidative coupling of methane on LaAlO3 perovskites partially substituted with alkali or alkali-earth ions, Journal of Molecular Catalysis A: Chemical, vol. 176, no. 1, pp. 253-265, 2001/11/20/ 2001.
[51]J. Xu et al., Constructing La2B2O7 (B = Ti, Zr, Ce) Compounds with Three Typical Crystalline Phases for the Oxidative Coupling of Methane: The Effect of Phase Structures, Superoxide Anions, and Alkalinity on the Reactivity, ACS Catalysis, vol. 9, no. 5, pp. 4030-4045, 2019/05/03 2019.
[52]A. Kumar, A. Verma, and S. Bhardwaj, Prediction of formability in perovskite-type oxides, The Open Applied Physics Journal, vol. 1, no. 1, 2008.
[53]M. Pena and J. Fierro, Chemical structures and performance of perovskite oxides, Chemical Reviews, vol. 101, no. 7, pp. 1981-2018, 2001.
[54]J. Zhu et al., Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis, ACS Catalysis, vol. 4, no. 9, pp. 2917-2940, 2014/09/05 2014.
[55]M. Misono, Catalysis of perovskite and related mixed oxides, vol. 176: Elsevier, 2013, pp. 67-95.
[56]H. Zhu, P. Zhang, and S. Dai, Recent advances of lanthanum-based perovskite oxides for catalysis, ACS Catalysis, vol. 5, no. 11, pp. 6370-6385, 2015.
[57]B. Białobok, J. Trawczyński, W. Miśta, and M. Zawadzki, Ethanol combustion over strontium-and cerium-doped LaCoO3 catalysts, Applied Catalysis B: Environmental, vol. 72, no. 3-4, pp. 395-403, 2007.
[58]C.-L. Li, C.-L. Wang, and Y.-C. Lin, Pd-integrated lanthanum-transition metal perovskites for methanol partial oxidation, Catalysis Today, vol. 174, no. 1, pp. 135-140, 2011.
[59]A. Eyssler et al., The Effect of the State of Pd on Methane Combustion in Pd-Doped LaFeO3, The Journal of Physical Chemistry C, vol. 114, no. 10, pp. 4584-4594, 2010/03/18 2010.
[60]K. T. C. Roseno, R. Brackmann, M. A. da Silva, and M. Schmal, Investigation of LaCoO3, LaFeO3 and LaCo0.5Fe0.5O3 perovskites as catalyst precursors for syngas production by partial oxidation of methane, International Journal of Hydrogen Energy, vol. 41, no. 40, pp. 18178-18192, 2016/10/26/ 2016.
[61]S. M. de Lima and J. M. Assaf, Ni–Fe Catalysts Based on Perovskite-type Oxides for Dry Reforming of Methane to Syngas, Catalysis Letters, vol. 108, no. 1, pp. 63-70, 2006/04/01 2006.
[62]D. Zubenko, S. Singh, and B. A. Rosen, Exsolution of Re-alloy catalysts with enhanced stability for methane dry reforming, Applied Catalysis B: Environmental, vol. 209, pp. 711-719, 2017/07/15/ 2017.
[63]R. Spinicci, A. Tofanari, M. Faticanti, I. Pettiti, and P. Porta, Hexane total oxidation on LaMO3 (M = Mn, Co, Fe) perovskite-type oxides, Journal of Molecular Catalysis A: Chemical, vol. 176, no. 1, pp. 247-252, 2001/11/20/ 2001.
[64]J. R. Mawdsley and T. R. Krause, Rare earth-first-row transition metal perovskites as catalysts for the autothermal reforming of hydrocarbon fuels to generate hydrogen, Applied Catalysis A: General, vol. 334, no. 1, pp. 311-320, 2008/01/01/ 2008.
[65]J. Zhang and L. Gao, Synthesis and characterization of nanocrystalline tin oxide by sol–gel method, Journal of Solid State Chemistry, vol. 177, no. 4-5, pp. 1425-1430, 2004.
[66]W. Li, M. Zhuo, and J. Shi, Synthesizing nano LaAlO3 powders via co-precipitation method, Materials Letters, vol. 58, no. 3-4, pp. 365-368, 2004.
[67]Y. Sim, I. Yang, D. Kwon, J.-M. Ha, and J. C. Jung, Preparation of LaAlO3 perovskite catalysts by simple solid-state method for oxidative coupling of methane, Catalysis Today, 2019.
[68]M. P. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, ed: Google Patents, 1967.
[69]W. Li, M. W. Zhuo, and J. L. Shi, Synthesizing nano LaAlO3 powders via co-precipitation method, Materials Letters, vol. 58, no. 3, pp. 365-368, 2004/01/01/ 2004.
[70]C. L. Lima et al., Temperature-induced phase transformations in Na2WO4 and Na2MoO4 crystals, Journal of Raman Spectroscopy, vol. 42, no. 4, pp. 799-802, 2011/04/01 2011.
[71]D. J. Wang, M. P. Rosynek, and J. H. Lunsford, Oxidative Coupling of Methane over Oxide-Supported Sodium-Manganese Catalysts, Journal of Catalysis, vol. 155, no. 2, pp. 390-402, 1995/09/01/ 1995.
[72]S.-f. Ji et al., The relationship between the structure and the performance of Na-W-Mn/SiO2 catalysts for the oxidative coupling of methane, Applied Catalysis A: General, vol. 225, no. 1, pp. 271-284, 2002/02/08/ 2002.
[73]J. Wu and S. Li, The Role of Distorted WO4 in the Oxidative Coupling of Methane on Supported Tungsten Oxide Catalysts, The Journal of Physical Chemistry, vol. 99, no. 13, pp. 4566-4568, 1995/03/01 1995.
[74]F. Deganello, M. L. Testa, V. La Parola, A. Longo, and A. C. Tavares, LaFeO3-based nanopowders prepared by a soft–hard templating approach: the effect of silica texture, Journal of Materials Chemistry A, vol. 2, no. 22, pp. 8438-8447, 2014.
[75]J. Wang et al., Comparative study on oxidation of methane to ethane and ethylene over Na2WO4–Mn/SiO2 catalysts prepared by different methods, Journal of Molecular Catalysis A: Chemical, vol. 245, no. 1, pp. 272-277, 2006/02/15/ 2006.
[76]S. Mahmoodi, M. R. Ehsani, and S. M. Ghoreishi, Effect of promoter in the oxidative coupling of methane over synthesized Mn/SiO2 nanocatalysts via incipient wetness impregnation, Journal of Industrial and Engineering Chemistry, vol. 16, no. 6, pp. 923-928, 2010/11/25/ 2010.
[77]H. Zanthoff and M. Baerns, Oxidative coupling of methane in the gas phase. Kinetic simulation and experimental verification, Industrial & Engineering Chemistry Research, vol. 29, no. 1, pp. 2-10, 1990/01/01 1990.
[78]S. Dooley et al., Methyl formate oxidation: Speciation data, laminar burning velocities, ignition delay times, and a validated chemical kinetic model, International Journal of Chemical Kinetics, vol. 42, no. 9, pp. 527-549, 2010/09/01 2010.
[79]S. Cimino, L. Lisi, S. De Rossi, M. Faticanti, and P. Porta, Methane combustion and CO oxidation on LaAl1−XMnXO3 perovskite-type oxide solid solutions, Applied Catalysis B: Environmental, vol. 43, no. 4, pp. 397-406, 2003/07/25/ 2003.
[80]S. Pak, P. Qiu, and J. H. Lunsford, Elementary Reactions in the Oxidative Coupling of Methane over Mn/Na2WO4/SiO2and Mn/Na2WO4/MgO Catalysts, Journal of Catalysis, vol. 179, no. 1, pp. 222-230, 1998/10/01/ 1998.
[81]V. Fleischer, R. Steuer, S. Parishan, and R. Schomäcker, Investigation of the surface reaction network of the oxidative coupling of methane over Na2WO4/Mn/SiO2 catalyst by temperature programmed and dynamic experiments, Journal of Catalysis, vol. 341, pp. 91-103, 2016/09/01/ 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔