(3.92.96.236) 您好!臺灣時間:2021/05/07 01:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄒雅茹
研究生(外文):Ya-JuTsou
論文名稱:疏水化層狀矽酸鹽衍生之銅觸媒於乙醯丙酸氫化為γ-戊內酯之研究
論文名稱(外文):Hydrophobic silica-supported Cu catalysts derived from Cu phyllosilicates in the hydrogenation of levulinic acid to γ-valerolactone
指導教授:林裕川林裕川引用關係
指導教授(外文):Yu-Chuan Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:105
中文關鍵詞:層狀矽酸鹽疏水性氫化乙醯丙酸γ-戊內酯
外文關鍵詞:copperhydrogenationhydrophobicitylevulinic acidphyllosilicate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:38
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用還原後之銅頁矽酸鹽 (copper phyllosilicate, CuPS) 進行接枝上正辛基乙氧基矽烷 (Octyltriethoxysilane, OTS) 合成具有疏水性之層狀矽酸鹽並應用於乙醯丙酸氫化為γ-戊內酯之研究。在 CuPS-R350-C8-R350 觸媒下可以發現具有最高的γ-戊內酯的產率 (〉85%) 及良好的觸媒穩定性,其原因為第一次及第二次之高溫還原 (350 oC) 可以降低 Cu 氧化態,以至於減低銅與乙醯丙酸形成錯合物的情況及抑制由 OTS 誘導之新的酸量。此外,OTS 接枝觸媒可抑制銅燒結情況且其觸媒本質活性 (TOF) 與未接枝之銅頁矽酸鹽相近,說明接枝上 OTS 不會影響其本質活性亦能提升觸媒之耐用性與γ-戊內酯的產率於乙醯丙酸氫化反應。
A reduction-silylation-reduction method was developed to synthesize hydrophobic Cu catalysts derived from Cu phyllosilicates (CuPS). Triethoxy(octyl)silane (OTS) was used as the coupling agent. The OTS-grafted, reduced CuPS catalysts were applied in the hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL). The most promising catalyst was synthesized by reducing CuPS at a high temperature (350 oC isotherm for 3 h), following by OTS-grafting, and then by repeating the previous reduction step. A high LA conversion (95.7%), GVL yield (95.2%) and stability (3 cycles with a 7.5% loss of initial activity) were obtained at a mild reaction condition (130 oC with H2 pressure of 12 bar). A high reduction temperature not only decreases the oxidation states of Cu species derived from CuPS, but also suppresses the silylation-induced acids. OTS-grafting was found to enhance GVL yield and to inhibit Cu sintering. Moreover, the intrinsic activity of a reduced CuPS catalyst was nearly intact after subjecting to silylation and the second reduction treatment.
目錄
摘要 I
英文延伸摘要 II
誌謝 VIII
目錄 IX
表目錄 XV
圖目錄 XVI
符號表 XXII
第一章 前言 1
1-1 引言 1
1-2 研究動機與設計 2
第二章 文獻回顧 3
2-1 生物質衍生物加氫催化發展與應用 3
2-1-1 乙醯丙酸加氫反應為γ-戊內酯之相關研究 5
2-2 層狀矽酸鹽簡介及加氫反應上應用 7
2-3 接枝疏水性官能基於載體之機制與應用 14
第三章 實驗 17
3-1 X 射線繞射儀 (XRD) 17
3-2 X 射線吸收光譜 19
3-3 氮氣恆溫吸脫附儀 22
3-4 水蒸氣吸附測試儀 25
3-5 高解析度穿透式電子顯微鏡 (HR-TEM) 26
3-6 掃描式電子顯微鏡 (SEM) 27
3-7 高解析感應耦合電漿質譜分析儀 (ICP-MS) 28
3-8 固態核磁共振儀 (NMR) 29
3-9 自動化學吸脫附儀 30
3-9-1 笑氣氧化-氫氣程溫還原反應 (N2O-H2-TPR) 31
3-9-2 氨氣程序升溫脫附 (NH3-TPD) 33
3-9-3 乙酸程溫表面反應 (Acetic acid-TPSR) 34
3-10 熱重分析儀 (TGA) 35
3-11 傅立葉轉換紅外光譜儀 (FTIR) 36
3-11-1 一氧化碳化學吸附 38
3-11-2 丙酮化學吸附 38
3-11-3 乙醯丙酸化學吸附 39
3-11-4 Pyridine 化學吸附 39
3-12 氣相層析儀 (GC) 40
3-13 觸媒製備 41
3-13-1 觸媒命名方式 42
3-14 觸媒活性測試 43
3-15 產物定性與定量分析 44
3-16 本質活性計算 45
3-17 觸媒失活 (deactivation) 計算 46
3-18 實驗室設備與藥品 47
第四章 結果與討論 49
4-1 觸媒還原溫度決定測試 49
4-2 觸媒於乙醯丙酸氫化反應性測試 51
4-2-1 觸媒之初始反應、長時間反應與重複使用測試 51
4-2-2 觸媒失活速率測試 56
4-2-3 水對觸媒在反應性影響測試 59
4-3 觸媒整體結構鑑定 60
4-3-1 XRD 鑑定 60
4-3-2 SEM 及 TEM 測試 62
4-3-3 NMR 鑑定 64
4-3-4 ICP 測試之觸媒組成與氮氣物理吸脫附測試 67
4-3-5 水吸附測試 69
4-3-6 EXAFS 測試 71
4-4 觸媒表面鑑定 73
4-4-1 觸媒進行 in situ reduction-IR 鑑定 73
4-4-2 N2O-H2-TPR 測試 74
4-4-3 CO-IR 鑑定 76
4-4-4 Acetic acid-TPSR 測試 78
4-4-5 NH3-TPD 測試 80
4-4-6 Pyridine-IR 測試 82
4-4-7 LA-IR 測試 84
4-4-8 Acetone-IR 測試 85
4-5 表面酸性來源討論 87
4-5-1 IR 測試 87
4-5-2 初濕含浸法樣品之 NH3-TPD 測試 88
4-5-3 TGA 測試 89
4-6 乙醯丙酸氫化之反應機制推測 91
4-7 不同合成之觸媒於反應性總整理 93
4-8 反應後觸媒鑑定 94
4-8-1 XRD 鑑定 94
4-8-2 IR 鑑定 95
第五章 結論 96
第六章 參考資料 97
1.Toupance, T., et al., Conditions of Formation of Copper Phyllosilicates in Silica-Supported Copper Catalysts Prepared by Selective Adsorption. J. Phys. Chem. B, 2002. 106(9): p. 2277-2286.
2.Hayes, D., et al., The Biofine Process – Production of Levulinic Acid, Furfural, and Formic Acid from Lignocellulosic Feedstocks. 2008. p. 139-164.
3.Kamm, B., M. Gerhardt, and G. Dautzenberg, Chapter 5. Catalytic Processes of Lignocellulosic Feedstock Conversion for Production of Furfural, Levulinic Acid, and Formic Acid-Based Fuel Components. New and Future Developments in Catalysis: Catalytic Biomass Conversion, 2013: p. 91-113.
4.Kamm, B., Biorefineries – their scenarios and challenges. Pure and Applied Chemistry, 2014. 86.
5.Yan, K., et al., Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels. Renewable and Sustainable Energy Reviews, 2015. 51: p. 986-997.
6.Marosvölgyi-Haskó, D., et al., Application of γ-Valerolactone as an Alternative Biomass-Based Medium for Aminocarbonylation Reactions. ChemPlusChem, 2016. 81(11): p. 1224-1229.
7.Wei, J., et al., Applications of novel biomass-derived platform molecule γ-valerolactone. 2016. 28: p. 1672-1681.
8.Yan, K., et al., Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals. Applied Catalysis B: Environmental, 2015. 179: p. 292-304.
9.Lange, J.-P., Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels, Bioproducts and Biorefining, 2007. 1(1): p. 39-48.
10.Assary, R.S., et al., Computational Studies of the Thermochemistry for Conversion of Glucose to Levulinic Acid. The Journal of Physical Chemistry B, 2010. 114(27): p. 9002-9009.
11.Zhang, L., et al., Hydrogenation of levulinic acid into gamma-valerolactone over in situ reduced CuAg bimetallic catalyst: Strategy and mechanism of preventing Cu leaching. Applied Catalysis B: Environmental, 2018. 232: p. 1-10.
12.Hengne, A.M. and C.V. Rode, Cu–ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone. Green Chemistry, 2012. 14(4): p. 1064-1072.
13.Chen, L., et al., Fatty-Acid–Metal-Ion Complexes as Multicolor Superhydrophobic Coating Materials. Chemistry – An Asian Journal, 2011. 6(7): p. 1757-1760.
14.Manzer, L.E., Catalytic synthesis of α-methylene-γ-valerolactone: a biomass-derived acrylic monomer. Applied Catalysis A: General, 2004. 272(1): p. 249-256.
15.Yan, Z.-p., L. Lin, and S. Liu, Synthesis of γ-Valerolactone by Hydrogenation of Biomass-derived Levulinic Acid over Ru/C Catalyst. Energy & Fuels, 2009. 23(8): p. 3853-3858.
16.Al-Shaal, M.G., W.R.H. Wright, and R. Palkovits, Exploring the ruthenium catalysed synthesis of γ-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions. Green Chemistry, 2012. 14(5): p. 1260-1263.
17.Luo, W., et al., Ruthenium-catalyzed hydrogenation of levulinic acid: Influence of the support and solvent on catalyst selectivity and stability. Journal of Catalysis, 2013. 301: p. 175-186.
18.Tan, J., et al., Water-Promoted Hydrogenation of Levulinic Acid to γ-Valerolactone on Supported Ruthenium Catalyst. ChemCatChem, 2014. 7.
19.Swarna Jaya, V., et al., Selective hydrogenation of levulinic acid to γ-valerolactone over a Ru/Mg–LaO catalyst. RSC Advances, 2015. 5(12): p. 9044-9049.
20.Tan, J., et al., Efficient aqueous hydrogenation of levulinic acid to γ-valerolactone over a highly active and stable ruthenium catalyst. Catalysis Science & Technology, 2016. 6(5): p. 1469-1475.
21.Piskun, A., et al., Support Screening Studies on the Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Ru Catalysts. Catalysts, 2016. 6: p. 131.
22.Li, S., et al., Conversion of levulinic acid to γ-valerolactone over ultra-thin TiO2 nanosheets decorated with ultrasmall Ru nanoparticle catalysts under mild conditions. Green Chemistry, 2019. 21(4): p. 770-774.
23.Xu, Q., et al., Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone. Green Chemistry, 2016. 18(5): p. 1287-1294.
24.Gupta, S.S.R. and M.L. Kantam, Selective hydrogenation of levulinic acid into γ-valerolactone over Cu/Ni hydrotalcite-derived catalyst. Catalysis Today, 2018. 309: p. 189-194.
25.Xie, Z., et al., Highly efficient hydrogenation of levulinic acid into 2-methyltetrahydrofuran over Ni–Cu/Al2O3–ZrO2 bifunctional catalysts. Green Chemistry, 2019. 21(3): p. 606-613.
26.Ndolomingo, M. and R. Meijboom, Noble and Base-Metal Nanoparticles Supported on Mesoporous Metal Oxides: Efficient Catalysts for the Selective Hydrogenation of Levulinic Acid to γ-Valerolactone. Catalysis Letters, 2019. 149.
27.Duarte, H., et al., Clay Mineral Nanotubes: Stability, Structure and Properties. 2012.
28.Bian, Z. and S. Kawi, Preparation, characterization and catalytic application of phyllosilicate: A review. Catalysis Today, 2020. 339: p. 3-23.
29.Fan, Q., P. Li, and D. Pan, Chapter 1 - Radionuclides sorption on typical clay minerals: Modeling and spectroscopies, in Interface Science and Technology, C. Chen, Editor. 2019, Elsevier. p. 1-38.
30.Lainé, M., et al., Reaction mechanisms in swelling clays under ionizing radiation: influence of the water amount and of the nature of the clay mineral. RSC Advances, 2017. 7(1): p. 526-534.
31.Burattin, P., M. Che, and C. Louis, Ni/SiO2 Materials Prepared by Deposition−Precipitation:  Influence of the Reduction Conditions and Mechanism of Formation of Metal Particles. The Journal of Physical Chemistry B, 2000. 104(45): p. 10482-10489.
32.Popa, T., et al., An environmentally benign and low-cost approach to synthesis of thermally stable industrial catalyst Cu/SiO2 for the hydrogenation of dimethyl oxalate to ethylene glycol. Applied Catalysis A: General, 2015. 505: p. 52-61.
33.Dong, F., et al., Ratio-controlled synthesis of phyllosilicate-like materials as precursors for highly efficient catalysis of the formyl group. Catalysis Science & Technology, 2017. 7(9): p. 1880-1891.
34.Ashok, J., et al., Ni and/or Ni–Cu alloys supported over SiO2 catalysts synthesized via phyllosilicate structures for steam reforming of biomass tar reaction. Catalysis Science & Technology, 2015. 5(9): p. 4398-4409.
35.Gong, X., et al., Copper nanoparticles socketed in situ into copper phyllosilicate nanotubes with enhanced performance for chemoselective hydrogenation of esters. Chem. Commun., 2017. 53.
36.Pritchard, J., et al., Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chemical Society Reviews, 2015. 44(11): p. 3808-3833.
37.Gong, J., et al., Synthesis of Ethanol via Syngas on Cu/SiO2 Catalysts with Balanced Cu0–Cu+ Sites. Journal of the American Chemical Society, 2012. 134(34): p. 13922-13925.
38.Xu, C., et al., Interfacing with silica boosts the catalysis of copper. Nature Communications, 2018. 9(1): p. 3367.
39.Konda, S.S.M., S. Caratzoulas, and D.G. Vlachos, Computational Insights into the Role of Metal and Acid Sites in Bifunctional Metal/Zeolite Catalysts: A Case Study of Acetone Hydrogenation to 2-Propanol and Subsequent Dehydration to Propene. ACS Catalysis, 2016. 6(1): p. 123-133.
40.Sinha, N.K. and M. Neurock, A first principles analysis of the hydrogenation of C1C4 aldehydes and ketones over Ru(0001). Journal of Catalysis, 2012. 295: p. 31-44.
41.Wang, Z.-Q., et al., High-Performance and Long-Lived Cu/SiO2 Nanocatalyst for CO2 Hydrogenation. ACS Catalysis, 2015. 5(7): p. 4255-4259.
42.Zhang, C., et al., Hydrogen Production via Steam Reforming of Ethanol on Phyllosilicate-Derived Ni/SiO2: Enhanced Metal–Support Interaction and Catalytic Stability. ACS Sustainable Chemistry & Engineering, 2013. 1(1): p. 161-173.
43.Kong, X., et al., Ni Nanoparticles Inlaid Nickel Phyllosilicate as a Metal–Acid Bifunctional Catalyst for Low-Temperature Hydrogenolysis Reactions. ACS Catalysis, 2015. 5(10): p. 5914-5920.
44.Wang, M., et al., Synthesis of a Ni Phyllosilicate with Controlled Morphology for Deep Hydrogenation of Polycyclic Aromatic Hydrocarbons. ACS Sustainable Chemistry & Engineering, 2019. 7(2): p. 1989-1997.
45.Yuan, E., et al., Synergic catalysis by a CuO-like phase and Cu0 for anaerobic dehydrogenation of 2,3-butanediol. Journal of Catalysis, 2020. 382: p. 256-268.
46.Zhao, Y., et al., Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation. Applied Catalysis A: General, 2017. 539: p. 59-69.
47.Chen, L.-F., et al., Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol. Journal of Catalysis, 2008. 257(1): p. 172-180.
48.Shan, J., et al., Identification of the dehydration active sites in glycerol hydrogenolysis to 1,2-propanediol over Cu/SiO2 catalysts. Journal of Catalysis, 2020. 383: p. 13-23.
49.Pinto, B.P., et al., Hydrogenation of Levulinic Acid (LA) to γ-Valerolactone (GVL) over Ni–Mo/C Catalysts and Water-Soluble Solvent Systems. Catal. Lett., 2017. 147(3): p. 751-757.
50.Arkles, B., Hydrophobicity, Hydrophilicity and Silanes. Paint and Coatings Industry, 2006. 22: p. 114.
51.Arkles, B., Tailoring Surfaces with Silanes. Chemtech, 1977. 7: p. 766-778.
52.van den Berg, R., et al., Support Functionalization To Retard Ostwald Ripening in Copper Methanol Synthesis Catalysts. ACS Catalysis, 2015. 5(7): p. 4439-4448.
53.Wang, M., et al., Enhanced Selectivity and Stability of Cu/SiO2 Catalysts for Dimethyl Oxalate Hydrogenation to Ethylene Glycol by Using Silane Coupling Agents for Surface Modification. Industrial & Engineering Chemistry Research, 2020. 59(20): p. 9414-9422.
54.Thommes, M., et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015. 87.
55.Singh, A.K., Chapter 4 - Experimental Methodologies for the Characterization of Nanoparticles, in Engineered Nanoparticles, A.K. Singh, Editor. 2016, Academic Press: Boston. p. 125-170.
56.Osinga, T.J., B.G. Linsen, and W.P. van Beek, The determination of the specific copper surface area in catalysts. Journal of Catalysis, 1967. 7(3): p. 277-279.
57.Sato, S., et al., Distinction between Surface and Bulk Oxidation of Cu through N2O Decomposition. Journal of Catalysis, 2000. 196(1): p. 195-199.
58.Li, H., et al., Highly efficient Ag-modified copper phyllosilicate nanotube: Preparation by co-ammonia evaporation hydrothermal method and application in the selective hydrogenation of carbonate. Journal of Materials Science & Technology, 2020. 47: p. 29-37.
59.Guerreiro, E.D., et al., Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation. Applied Catalysis A: General, 1997. 165(1): p. 259-271.
60.Niwa, M. and N. Katada, Measurements of acidic property of zeolites by temperature programmed desorption of ammonia. Catalysis Surveys from Asia, 1997. 1(2): p. 215-226.
61.Katada, N. and M. Niwa, Analysis of Acidic Properties of Zeolitic and Non-Zeolitic Solid Acid Catalysts Using Temperature-Programmed Desorption of Ammonia. Catalysis Surveys from Asia, 2004. 8(3): p. 161-170.
62.Genuino, H.C., et al., Catalytic Hydrogenation of Renewable Levulinic Acid to γ-Valerolactone: Insights into the Influence of Feed Impurities on Catalyst Performance in Batch and Flow Reactors. ACS Sustainable Chemistry & Engineering, 2020. 8(15): p. 5903-5919.
63.Ngo, D.T., T. Sooknoi, and D.E. Resasco, Improving stability of cyclopentanone aldol condensation MgO-based catalysts by surface hydrophobization with organosilanes. Applied Catalysis B: Environmental, 2018. 237: p. 835-843.
64.Levenspiel, O., Experimental search for a simple rate equation to describe deactivating porous catalyst particles. Journal of Catalysis, 1972. 25(2): p. 265-272.
65.Satterfield, C.N., Chemical reaction engineering, Octave Levenspiel, Wiley, New York (1972). 578 pages. $16.95. AIChE Journal, 1973. 19(1): p. 206-207.
66.Nelson, A.E., Fundamentals of Industrial Catalytic Processes, 2nd Edition. C. H. Bartholomew and Robert J. Farrauto John Wiley and Sons, Hoboken, NJ, 966 pp., 2006. The Canadian Journal of Chemical Engineering, 2007. 85(1): p. 127-128.
67.Shimizu, K.-i., et al., Ligand field effect on the chemical shift in XANES spectra of Cu(II) compounds. Physical Chemistry Chemical Physics, 2001. 3(5): p. 862-866.
68.Chwiej, J., et al., Study of Cu chemical state inside single neurons from Parkinson's disease and control substantia nigra using the micro-XANES technique. Journal of Trace Elements in Medicine and Biology, 2008. 22(3): p. 183-188.
69.Kumar, P., R. Nagarajan, and R. Sarangi, Quantitative X-ray absorption and emission spectroscopies: electronic structure elucidation of Cu2S and CuS. Journal of Materials Chemistry C, 2013. 1(13): p. 2448-2454.
70.Bergman, S.L., et al., In-situ studies of oxidation/reduction of copper in Cu-CHA SCR catalysts: Comparison of fresh and SO2-poisoned catalysts. Applied Catalysis B: Environmental, 2020. 269: p. 118722.
71.Yue, H., et al., A copper-phyllosilicate core-sheath nanoreactor for carbon–oxygen hydrogenolysis reactions. Nature Communications, 2013. 4(1): p. 2339.
72.Gong, X., et al., Copper nanoparticles socketed in situ into copper phyllosilicate nanotubes with enhanced performance for chemoselective hydrogenation of esters. Chemical Communications, 2017. 53(51): p. 6933-6936.
73.Zhu, Y., et al., Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. Journal of Catalysis, 2017. 353: p. 315-324.
74.Sushkevich, V.L. and J.A. van Bokhoven, Kinetic study and effect of water on methane oxidation to methanol over copper-exchanged mordenite. Catalysis Science & Technology, 2020. 10(2): p. 382-390.
75.Purcar, V., et al. The Effect of Different Coupling Agents on Nano-ZnO Materials Obtained via the Sol-Gel Process. Nanomaterials (Basel, Switzerland), 2017. 7, DOI: 10.3390/nano7120439.
76.Wu, L., et al., Selective conversion of coconut oil to fatty alcohols in methanol over a hydrothermally prepared Cu/SiO2 catalyst without extraneous hydrogen. Chemical Communications, 2017. 53(45): p. 6152-6155.
77.Bui, T., et al., High-Temperature Grafting Silylation for Minimizing Leaching of Acid Functionality from Hydrophobic Mesoporous Silicas Used as Catalysts in the Liquid Phase. Langmuir, 2019. 35.
78.Protsak, I., et al., A 29Si, 1H, and 13C Solid-State NMR Study on the Surface Species of Various Depolymerized Organosiloxanes at Silica Surface. Nanoscale Research Letters, 2019. 14:160.
79.Di, W., et al., Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol. Applied Catalysis A: General, 2016. 510: p. 244-259.
80.Behnsen, J. and D.R. Faulkner, Water and argon permeability of phyllosilicate powders under medium to high pressure. Journal of Geophysical Research: Solid Earth, 2011. 116(B12).
81.Yesilbas, M. and J.-F. Boily, Particle Size Controls on Water Adsorption and Condensation Regimes at Mineral Surfaces. Scientific Reports, 2016. 6: p. 32136.
82.Pham, H.N., et al., Carbon Overcoating of Supported Metal Catalysts for Improved Hydrothermal Stability. ACS Catalysis, 2015. 5(8): p. 4546-4555.
83.Xiong, Q., et al., New insight into the toxic effects of chloramphenicol and roxithromycin to algae using FTIR spectroscopy. Aquatic Toxicology, 2019. 207: p. 197-207.
84.Pritchard, J., T. Catterick, and R.K. Gupta, Infrared spectroscopy of chemisorbed carbon monoxide on copper. Surf. Sci., 1975. 53(1): p. 1-20.
85.Fisher, I.A. and A.T. Bell, In situ infrared study of methanol synthesis from H2/CO over Cu/SiO2 and Cu/ZrO2/SiO2. J. Catal., 1998. 178(1): p. 153-173.
86.Krahl, T., et al., Determination of the Acidity of High Surface AlF3 by IR Spectroscopy of Adsorbed CO Probe Molecules. The Journal of Physical Chemistry C, 2007. 111(49): p. 18317-18325.
87.Bawaked, S. and N. Katabathini, Structural and catalytic properties of copper silicate nanomaterials. Scientific Reports, 2020. 10.
88.Velthoen, M.E.Z., S. Nab, and B.M. Weckhuysen, Probing acid sites in solid catalysts with pyridine UV-Vis spectroscopy. Physical Chemistry Chemical Physics, 2018. 20(33): p. 21647-21659.
89.Emeis, C.A., Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 1993. 141(2): p. 347-354.
90.Gong, J., et al., Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0–Cu+ Sites. J. Am. Chem. Soc., 2012. 134(34): p. 13922-13925.
91.Yue, H., et al., A copper-phyllosilicate core-sheath nanoreactor for carbon–oxygen hydrogenolysis reactions. Nature Commun., 2013. 4(1): p. 2339.
92.Chen, H., et al., Effects of water on the hydrogenation of acetone over Ni/MgAlO catalysts. Chinese Journal of Catalysis, 2015. 36(3): p. 380-388.
93.Ye, R.-P., et al., Synthesis of Robust MOF-Derived Cu/SiO2 Catalyst with Low Copper Loading via Sol–Gel Method for the Dimethyl Oxalate Hydrogenation Reaction. ACS Catalysis, 2018. 8(4): p. 3382-3394.
94.Pramanik, A., S. Maiti, and S. Mahanty, Metal hydroxides as a conversion electrode for lithium-ion batteries: a case study with a Cu(OH)2 nanoflower array. Journal of Materials Chemistry A, 2014. 2(43): p. 18515-18522.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔