(3.238.96.184) 您好!臺灣時間:2021/05/18 15:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳廣信
研究生(外文):Kuang-HsinWu
論文名稱:聚苯乙烯-聚乙二醇團聯共聚物混摻聚苯乙烯-聚甲基丙烯酸甲酯團聯共聚物之形態與晶體結構
論文名稱(外文):Morphology and Crystal Structure of PS-b-PEO/PS-b-PMMA Blends
指導教授:羅介聰
指導教授(外文):Chieh-Tsung Lo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:98
中文關鍵詞:團聯共聚物均聚物混摻相行為結晶行為
外文關鍵詞:block copolymerhomopolymerblendphase behaviorcrystal behavior
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討poly(styrene-block-(ethylene oxide) (PS-b-PEO)中加入poly(styrene-block-methyl methacrylate) (PS-b-PMMA)之雙成份混摻物的相行為與結晶行為。系統的微相結構會隨著PS-b-PEO和PS-b-PMMA之間分子鏈長短差異發生改變,在對稱型PS-b-PEO/對稱型PS-b-PMMA混摻系統中,由於PS微相的體積分率約在0.5左右,因此形成層狀結構;在非對稱型PS-b-PEO/對稱型PS-b-PMMA混摻系統中,在PS-b-PMMA含量較高時,混摻系統呈現兩種不同大小的層狀結構之巨觀相分離,這是由於PMMA含量較多時,PEO和PMMA相容性變差,因此PS-b-PEO和PS-b-PMMA形成巨觀相分離。此外,PS-b-PMMA的添加使得混摻系統的熔點、結晶溫度、結晶速率和結晶度等熱性質皆下降,所受影響的程度會隨著PEO與PMMA分子量的差異有所不同。另一方面,透過將PS-b-PEO混摻不同型式的PMMA(均聚物PMMA與團聯共聚物PS-b-PMMA),並與PEO/PMMA混摻系統作比較,可得到結晶溫度和結晶度的大小為PEO/PMMA〉PS-b-PEO/PS-b-PMMA〉PS-b-PEO/PMMA。此外,由於不同型式的PMMA在PS-b-PEO的微相結構中有不同的分佈行為,因此結晶的方向性在不同混摻系統中會有所差異,而PEO在不同溫度下結晶,晶體方向會發生改變
We investigated the phase and crystallization behaviors of binary block copolymer blends composed of poly(styrene-block-(ethylene oxide) (PS-b-PEO) and poly(styrene-block- methyl methacrylate) (PS-b-PMMA). The micro-domain morphology changed with relative chain lengths between PS-b-PEO and PS-b-PMMA. In symmetric PS-b-PEO /symmetric PS-b-PMMA blends, the blends formed a lamellar micro-domain morphology because the volume fraction of the PS micro-domain was approximately 0.5. By contrast, in asymmetric PS-b-PEO/symmetric PS-b-PMMA blends, macro-phase separation occurred when a high amount of PS-b-PMMA was added to the blends, resulting in the coexisted lamellar micro-domain morphologies with different micro-domain size. Such behavior was attributed to the poor compatibility between PEO and PMMA in high PMMA content. Moreover, the addition of PS-b-PMMA caused decreased in the melting point, crystallization temperature, crystallization and degree of crystallinity. The effects depended on molecular weight difference between PEO and PMMA. Furthermore, we blended PS-b-PEO with different molecular structures of PMMA(PMMA homopolymer and PS-b-PMMA block copolymer), and compared them with the PEO/PMMA blend. The crystallization temperature and crystallinity were in the order of PEO/PMMA〉 PS-b-PEO/PS-b-PMMA〉PS-b-PEO/PMMA. In addition, crystal orientation varied with different molecular structures of PMMA because different dispersion states of PMMA in the PS-b-PEO micro-domain morphology. PEO-crystal orientation was also changed with crystallization temperature.
摘要 I
Extend abstract II
致謝 XI
目錄 XII
表目錄 XIV
圖目錄 XVI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 共聚物(copolymer) 3
2.2 團聯共聚物之自組裝(Self-Assembly) 4
2.2.1 雙團聯共聚物之微相分離 4
2.2.2 有序無序轉換(order-disorder transition, ODT) 7
2.3 高分子混摻 9
2.3.1 團聯共聚物/均聚物混摻 9
2.3.2 團聯共聚物/團聯共聚物混摻 13
2.4 高分子結晶 15
2.4.1 等溫結晶動力學 17
2.4.2 非等溫結晶動力學 19
2.4.3 團聯共聚物的結晶行為 21
第三章 實驗 26
3.1 藥品 26
3.2 分析儀器 27
3.3 樣品製備 28
第四章 結果與討論 30
4.1 對稱型團聯共聚物/對稱型團聯共聚物之混摻 32
4.1.1 PS-b-PEO(Mn = 9000-b-10000 g/mol)/PS-b-PMMA(Mn = 10000- b-10000 g/mol)混摻系統 32
4.1.2 PS-b-PEO(Mn = 21500-b-20000 g/mol)/PS-b-PMMA(Mn = 10000- b-10000 g/mol)混摻系統 39
4.2 非對稱型團聯共聚物/對稱型團聯共聚物之混摻 46
4.2.1 PS-b-PEO(Mn = 10000-b-21000 g/mol)/PS-b-PMMA(Mn = 10000- b-10000 g/mol)混摻系統 46
4.2.2 PS-b-PEO(Mn = 12000-b-30000 g/mol)/PS-b-PMMA(Mn = 10000- b-10000 g/mol)混摻系統 54
4.3 對稱型團聯共聚物/均聚物之混摻 62
4.3.1 PS-b-PEO(Mn = 21500-b-20000 g/mol)/PMMA(Mn = 8650 g/mol)混摻系統 62
4.4 結晶方向性 73
4.4.1 PS-b-PEO(Mn = 9000-b-10000 g/mol)/PMMA(Mn = 8650 g/mol)或PS-b-PMMA(Mn = 10000-b-10000 g/mol)之混摻系統 77
4.4.2 PS-b-PEO(Mn = 21500-b-20000 g/mol)/PMMA(Mn = 8650 g/mol)或PS-b-PMMA(Mn = 10000-b-10000 g/mol)之混摻系統 85
第五章 結論 93
第六章 參考文獻 95
[1]D. Yamaguchi and T. Hashimoto, A phase diagram for the binary blends of nearly symmetric diblock copolymers. 1. Parameter space of molecular weight ratio and blend composition, Macromolecules, vol. 34, no. 18, pp. 6495-6505, 2001.
[2]F. Court and T. Hashimoto, Morphological studies of binary mixtures of block copolymers. 1. Cosurfactant effects and composition dependence of morphology, Macromolecules, vol. 34, no. 8, pp. 2536-2545, 2001.
[3]F. Chen, Y. Kondo, and T. Hashimoto, Control of nanostructure in mixtures of block copolymers: Curvature control via cosurfactant effects, Macromolecules, vol. 40, no. 10, pp. 3714-3723, 2007.
[4] T. Hashimoto, D. Yamaguchi, and F. Court, Self‐assembly in mixtures of block copolymers:“co‐surfactant effects on morphology control, in Macromolecular Symposia, 2003, vol. 195, no. 1: Wiley Online Library, pp. 191-200.
[5]H. Tanaka, H. Hasegawa, and T. Hashimoto, Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low molecular weight homopolymers, Macromolecules, vol. 24, no. 1, pp. 240-251, 1991.
[6]T. Hashimoto, H. Tanaka, and H. Hasegawa, Ordered structure in mixtures of a block copolymer and homopolymers. 2. Effects of molecular weights of homopolymers, Macromolecules, vol. 23, no. 20, pp. 4378-4386, 1990.
[7]P. Huang et al., Confinement size effect on crystal orientation changes of poly (ethylene oxide) blocks in poly (ethylene oxide)-b-polystyrene diblock copolymers, Macromolecules, vol. 37, no. 10, pp. 3689-3698, 2004.
[8]Y. Mai and A. Eisenberg, Self-assembly of block copolymers, Chemical Society Reviews, vol. 41, no. 18, pp. 5969-5985, 2012.
[9]S. Darling, Directing the self-assembly of block copolymers, Progress in Polymer Science, vol. 32, no. 10, pp. 1152-1204, 2007.
[10]林柄良, 剪切流場下對嵌段共聚物微觀相配向的影響, 碩士, 化學工程與材料工程學系, 東海大學, 台中市, 2009. [Online]. Available: https://hdl.handle.net/11296/6c86jj
[11]Y. Zhao, E. Sivaniah, and T. Hashimoto, SAXS Analysis of the Order− Disorder Transition and the Interaction Parameter of Polystyrene-block-poly (methyl methacrylate), Macromolecules, vol. 41, no. 24, pp. 9948-9951, 2008.
[12]C. Luo, X. Han, Y. Gao, H. Liu, and Y. Hu, Crystallization behavior of “wet brush and “dry brush blends of PS‐b‐PEO‐b‐PS/h‐PEO, Journal of Applied Polymer Science, vol. 113, no. 2, pp. 907-915, 2009.
[13]S. T. Milner, Polymer crystal–melt interfaces and nucleation in polyethylene, Soft Matter, vol. 7, no. 6, pp. 2909-2917, 2011.
[14]J. N. Hay, Application of the modified avrami equations to polymer crystallisation kinetics, British Polymer Journal, vol. 3, no. 2, pp. 74-82, 1971.
[15]E. Ergoz, J. Fatou, and L. Mandelkern, Molecular weight dependence of the crystallization kinetics of linear polyethylene. I. Experimental results, Macromolecules, vol. 5, no. 2, pp. 147-157, 1972.
[16]M. Reitman, D. J. Jaekel, R. Siskey, and S. M. Kurtz, Morphology and crystalline architecture of polyaryletherketones, in PEEK Biomaterials Handbook: Elsevier, 2019, pp. 53-66.
[17]J. Málek, Kinetic analysis of crystallization processes in amorphous materials, Thermochimica Acta, vol. 355, no. 1-2, pp. 239-253, 2000.
[18]T. Liu, Z. Mo, S. Wang, and H. Zhang, Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone), Polymer Engineering & Science, vol. 37, no. 3, pp. 568-575, 1997.
[19]A. Jeziorny, Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC, Polymer, vol. 19, no. 10, pp. 1142-1144, 1978.
[20]M. Di Lorenzo and C. Silvestre, Non-isothermal crystallization of polymers, Progress in Polymer Science, vol. 24, no. 6, pp. 917-950, 1999.
[21]S. Nakagawa, H. Marubayashi, and S. Nojima, Crystallization of polymer chains confined in nanodomains, European Polymer Journal, vol. 70, pp. 262-275, 2015.
[22]L. Zhu et al., Crystallization temperature-dependent crystal orientations within nanoscale confined lamellae of a self-assembled crystalline− amorphous diblock copolymer, Journal of the American Chemical Society, vol. 122, no. 25, pp. 5957-5967, 2000.
[23]L. Zhu et al., Initial-stage growth controlled crystal orientations in nanoconfined lamellae of a self-assembled crystalline− amorphous diblock copolymer, Macromolecules, vol. 34, no. 5, pp. 1244-1251, 2001.
[24]H.-G. Braun and E. Meyer, Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization, International journal of molecular sciences, vol. 14, no. 2, pp. 3254-3264, 2013.
[25]L. Zhu et al., Phase structures and morphologies determined by self-organization, vitrification, and crystallization: confined crystallization in an ordered lamellar phase of PEO-b-PS diblock copolymer, Polymer, vol. 42, no. 13, pp. 5829-5839, 2001.
[26]S.-W. Yeh, K.-H. Wei, Y.-S. Sun, U.-S. Jeng, and K. S. Liang, Morphological transformation of PS-b-PEO diblock copolymer by selectively dispersed colloidal CdS quantum dots, Macromolecules, vol. 36, no. 21, pp. 7903-7907, 2003.
[27]Y. Sun, M. Steinhart, D. Zschech, R. Adhikari, G. H. Michler, and U. Gösele, Diameter‐Dependence of the Morphology of PS‐b‐PMMA Nanorods Confined Within Ordered Porous Alumina Templates, Macromolecular Rapid Communications, vol. 26, no. 5, pp. 369-375, 2005.
[28]C.-C. Weng and K.-H. Wei, Selective distribution of surface-modified TiO2 nanoparticles in polystyrene-b-poly (methyl methacrylate) diblock copolymer, Chemistry of materials, vol. 15, no. 15, pp. 2936-2941, 2003.
[29]X. Li and S. Hsu, An analysis of the crystallization behavior of poly (ethylene oxide)/poly (methyl methacrylate) blends by spectroscopic and calorimetric techniques, Journal of Polymer Science: Polymer Physics Edition, vol. 22, no. 7, pp. 1331-1342, 1984.
[30]G. R. Rao, C. Castiglioni, M. Gussoni, G. Zerbi, and E. Martuscelli, Probing the structure of polymer blends by vibrational spectroscopy: the case of poly (ethylene oxide) and poly (methyl methacrylate) blends, Polymer, vol. 26, no. 6, pp. 811-820, 1985.
[31]T. Callaghan and D. R. Paul, Interaction energies for blends of poly (methyl methacrylate), polystyrene, and poly (. alpha.-methylstyrene) by the critical molecular weight method, Macromolecules, vol. 26, no. 10, pp. 2439-2450, 1993.
[32]I. Hopkinson, F. Kiff, R. Richards, S. King, and T. Farren, Isotopic labelling and composition dependence of interaction parameters in polyethylene oxide/polymethyl methacrylate blends, Polymer, vol. 36, no. 18, pp. 3523-3531, 1995.
[33]H. Ito, T. P. Russell, and G. Wignall, Interactions in mixtures of poly (ethylene oxide) and poly (methyl methacrylate), Macromolecules, vol. 20, no. 9, pp. 2213-2220, 1987.
[34]F. Court and T. Hashimoto, Morphological studies of binary mixtures of block copolymers. 2. Chain organization of long and short blocks in lamellar microdomains and its effect on domain size and stability, Macromolecules, vol. 35, no. 7, pp. 2566-2575, 2002.
[35]N. Rakkapao, V. Vao-soongnern, Y. Masubuchi, and H. Watanabe, Miscibility of chitosan/poly (ethylene oxide) blends and effect of doping alkali and alkali earth metal ions on chitosan/PEO interaction, Polymer, vol. 52, no. 12, pp. 2618-2627, 2011.
[36]M. S. Lisowski, Q. Liu, J. Cho, J. Runt, F. Yeh, and B. S. Hsiao, Crystallization behavior of poly (ethylene oxide) and its blends using time-resolved wide-and small-angle X-ray scattering, Macromolecules, vol. 33, no. 13, pp. 4842-4849, 2000.
[37]E. Martuscelli, C. Silvestre, M. L. Addonizio, and L. Amelino, Phase structure and compatibility studies in poly (ethylene oxide)/poly (methyl methacrylate) blends, Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, vol. 187, no. 6, pp. 1557-1571, 1986.
[38]Q. Guo, Polymer morphology: principles, characterization, and processing. John Wiley & Sons, 2016.
[39]S. Z. Cheng, J. Chen, J. S. Barley, A. Zhang, A. Habenschuss, and P. R. Zschack, Isothermal thickening and thinning processes in low molecular-weight poly (ethylene oxide) fractions crystallized from the melt. 3. Molecular weight dependence, Macromolecules, vol. 25, no. 5, pp. 1453-1460, 1992.
[40]Y.-S. Sun, T.-M. Chung, Y.-J. Li, R.-M. Ho, B.-T. Ko, and U.-S. Jeng, Crystal orientation within lamellae-forming block copolymers of semicrystalline poly (4-vinylpyridine)-b-poly (ε-caprolactone), Macromolecules, vol. 40, no. 18, pp. 6778-6781, 2007.
電子全文 電子全文(網際網路公開日期:20250830)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top