(3.236.118.225) 您好!臺灣時間:2021/05/16 13:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:白經廷
研究生(外文):Ching-TingPai
論文名稱:生質甲醇用於燃料電池車之環境衝擊與經濟評估
論文名稱(外文):Environmental Impact and Economic Analysis of Fuel Cell Vehicle Using Bio-methanol
指導教授:吳煒吳煒引用關係
指導教授(外文):Wei Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:106
中文關鍵詞:共消化甲醇製程燃料電池車環境衝擊評估經濟評估
外文關鍵詞:Co-digestionMethanol processFuel cell vehicleEnvironmental impact analysisEconomic analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於石化燃料大量的消耗,碳排及環境汙染的問題日益嚴重,各種能源技術不斷推出,而燃料電池被認為是最乾淨且高效率的技術之一,燃料電池在車輛的應用上也正在逐漸發酵中,先有Toyota提出的氫能車,後有研究團隊提出甲醇燃料電池車的概念,然而,雖然氫氣與甲醇在使用上看似乾淨環保,但是若以生命週期的角度來考量,這類乾淨能源的製造過程才是造成汙染的關鍵。
由於上述原因,本研究將以Well-to-Wheel的角度,從燃料的製造到車輛製造,再到行駛過程,全面性的評估氫氣與甲醇燃料電池車對環境造成的衝擊,另外,在本研究中將會提出以小麥桿及為藻作為原料的共消化系統來生產甲醇,做出環境衝擊的比較,同時,也對此種燃料進行經濟評估,研究該製程是否具有經濟的可行性。
結果顯示,共消化系統生產的甲醇能夠大幅降低環境衝擊方面,衝擊僅為傳統天然氣製甲醇的32%,這也使得甲醇車整體的環境衝擊有顯著的下降,甚至比氫能車更具有優勢,不過,在燃料的經濟評估中,共消化系統所生產的甲醇成本較高,較傳統天然氣生產的甲醇高出18.6%,綜上所述,雖然本研究所提出的甲醇製造成本較高,但是所降低的環境衝擊幅度更大,因此,在未來環保日漸被重視的情況下,共消化系統產甲醇與甲醇燃料電池車具有環境及經濟可行性。
Due to the depletion of fossil fuel, people are paying attention to CO2 emission and pollution. Several new energy sources are introduced by companies and research groups to reduce contamination. Fuel cell, considered as one of the cleanest and most efficient power supplies, is equipped in a vehicle allowing it to be fueled by hydrogen or methanol. However, in the aspect of life cycle, the key to pollution is not only the emission they create but also the material source and manufacture process. Therefore, this research will conduct an analysis on hydrogen fuel cell vehicle (HFCV) and direct methanol fuel cell vehicle (DMFCV) under a Well-to-Wheel (WTW) scope, which includes fuel production, vehicle production, and driving, using SimaPro®. Simultaneously, a co-digestion methanol process is proposed and included in the analysis. This process aims to make use of agricultural waste to generate energy. Nevertheless, the cost could be an issue in this case. Therefore, an economic performance focusing on methanol production is also evaluated using levelized cost of methanol (LCOM) in this research. The results showed that methanol produced by co-digestion system can greatly decrease environmental impact. It is a 68% reduction compared to traditional one. With the contribution of this bio-methanol, the overall environmental impact of DMFCV also decreases significantly, even more advantageous than HFCV. On the other hand, in the economic analysis result, traditional methanol costs 18.6% less than bio-methanol.
摘要 II
Extend Abstract IV
致謝 XIII
目錄 XIV
圖目錄 XVIII
表目錄 XX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 農業廢棄物生產甲醇 2
1.2.2 燃料電池結合甲醇產氫系統 3
1.2.3 燃料電池電動車系統建模及分析 3
1.3 研究動機 5
第二章 建模理論 7
2.1 厭氧消化槽 8
2.2 微藻廢水處理 10
2.2.1 微藻概述 10
2.2.2 廢水處理-High rate algal pond 11
2.3 熱電聯產 13
2.3.1 壓縮機模型 13
2.3.2 渦輪模型 14
2.3.3 Heat recovery steam generator model 14
2.4 甲醇製程 15
2.5 多管式同心圓型薄膜甲醇重組器產氫系統 17
2.5.1 內外管化學反應 18
2.5.2 內外管建模 19
2.6 質子交換膜燃料電池 21
2.7 儲能設備 23
2.7.1 鎳氫電池 23
2.7.2 鋰離子電池 23
2.8 永磁同步馬達 24
第三章 目標範疇界定與盤查分析 25
3.1 目標範疇界定(Goal and Scope Definition) 25
3.1.1 功能單位 26
3.1.2 系統邊界 26
3.2 盤查分析(Life Cycle Inventory) 31
3.2.1 小麥與小麥桿 31
3.2.2 微藻 36
3.2.3 厭氧消化-共消化 39
3.2.4 CHP 41
3.2.5 沼氣純化單元 42
3.2.6 氫氣製程與甲醇製程 43
3.2.7 燃料電池車 47
3.2.8 背景系統 49
3.2.9 LCI Summary 51
第四章 環境衝擊評估與經濟分析 65
4.1 環境衝擊評估 66
4.1.1 中點評估 66
4.1.2 末點評估 80
4.2 經濟分析 87
4.2.1 設備成本 87
4.2.2 操作成本 91
4.2.3 結果與討論 94
第五章 結論與未來展望 97
5.1 結論 97
5.2 未來展望 99
參考文獻 100
[1]IEA. (2017). [Online]. Available: https://www.iea.org/data-and-statistics/data-tables?country=WORLD&energy=Electricity&year=2017.
[2]W. Wu, B.-N. Chuang, J.-J. Hwang, C.-K. Lin, and S.-B. Yang, Techno-economic evaluation of a hybrid fuel cell vehicle with on-board MeOH-to-H2 processor, Applied Energy, vol. 238, pp. 401-412, 2019/03/15/ 2019.
[3]C. S. Wassell and T. P. Dittmer, Are subsidies for biodiesel economically efficient?, Energy Policy, vol. 34, no. 18, pp. 3993-4001, 2006/12/01/ 2006.
[4]M. L. G. Renó, E. E. S. Lora, J. C. E. Palacio, O. J. Venturini, J. Buchgeister, and O. Almazan, A LCA (life cycle assessment) of the methanol production from sugarcane bagasse, Energy, vol. 36, no. 6, pp. 3716-3726, 2011/06/01/ 2011.
[5]H. Nakagawa et al., Biomethanol Production and CO(SUB)2(/SUB) Emission Reduction from Forage Grasses, Trees, and Crop Residues, Japan Agricultural Research Quarterly: JARQ, vol. 41, no. 2, pp. 173-180, 2007.
[6]J. Zhang, Y. Xiang, S. Lu, and S. P. Jiang, High Temperature Polymer Electrolyte Membrane Fuel Cells for Integrated Fuel Cell – Methanol Reformer Power Systems: A Critical Review, Advanced Sustainable Systems, vol. 2, no. 8-9, p. 1700184, 2018.
[7]A. T. Stamps and E. P. Gatzke, Dynamic modeling of a methanol reformer—PEMFC stack system for analysis and design, Journal of Power Sources, vol. 161, no. 1, pp. 356-370, 2006/10/20/ 2006.
[8]W. Wu and C.-C. Pai, Control of a heat-integrated proton exchange membrane fuel cell system with methanol reforming, Journal of Power Sources, vol. 194, no. 2, pp. 920-930, 2009/12/01/ 2009.
[9]D. Ipsakis, S. Voutetakis, S. Papadopoulou, and P. Seferlis, Optimal operability by design in a methanol reforming-PEM fuel cell autonomous power system, International Journal of Hydrogen Energy, vol. 37, no. 21, pp. 16697-16710, 2012/11/01/ 2012.
[10]G. Livinţ, V. Horga, M. Răţoi, and M. Albu, Control of hybrid electrical vehicles, Electric Vehicles–Modelling and Simulations, p. 41, 2011.
[11]S. Yu, J. Zhang, and L. Wang, Power management strategy with regenerative braking for fuel cell hybrid electric vehicle, in 2009 Asia-Pacific Power and Energy Engineering Conference, 2009: IEEE, pp. 1-4.
[12]C.-Y. Li and G.-P. Liu, Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles, Journal of Power Sources, vol. 192, no. 2, pp. 525-533, 2009/07/15/ 2009.
[13]O. Tremblay and L.-A. Dessaint, Experimental validation of a battery dynamic model for EV applications, World electric vehicle journal, vol. 3, no. 2, pp. 289-298, 2009.
[14]M.-J. Kim and H. Peng, Power management and design optimization of fuel cell/battery hybrid vehicles, Journal of Power Sources, vol. 165, no. 2, pp. 819-832, 2007/03/20/ 2007.
[15]N. Sulaiman, M. A. Hannan, A. Mohamed, E. H. Majlan, and W. R. Wan Daud, A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges, Renewable and Sustainable Energy Reviews, vol. 52, pp. 802-814, 2015/12/01/ 2015.
[16]朱衍臻, 莊振軒, 李宗翰, 楊志維, and 黃文達, 台灣原生或本地植物之碳封存能力評估, 中華民國雜草會刊, vol. 39, 2018.
[17]V. Nallathambi Gunaseelan, Anaerobic digestion of biomass for methane production: A review, Biomass and Bioenergy, vol. 13, no. 1, pp. 83-114, 1997/01/01/ 1997.
[18]J. Bacenetti, M. Negri, M. Fiala, and S. González-García, Anaerobic digestion of different feedstocks: Impact on energetic and environmental balances of biogas process, Science of The Total Environment, vol. 463-464, pp. 541-551, 2013/10/01/ 2013.
[19]P. Weiland, Biogas production: current state and perspectives, Applied Microbiology and Biotechnology, vol. 85, no. 4, pp. 849-860, 2010/01/01 2010.
[20]K. V. Rajeshwari, M. Balakrishnan, A. Kansal, K. Lata, and V. V. N. Kishore, State-of-the-art of anaerobic digestion technology for industrial wastewater treatment, Renewable and Sustainable Energy Reviews, vol. 4, no. 2, pp. 135-156, 2000/06/01/ 2000.
[21]H. N. Gavala, I. Angelidaki, and B. K. Ahring, Kinetics and modeling of anaerobic digestion process, in Biomethanation I: Springer, 2003, pp. 57-93.
[22]J. N. Rogers et al., A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales, Algal Research, vol. 4, pp. 76-88, 2014/04/01/ 2014.
[23]A. Xia and J. D. Murphy, Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems, Trends in Biotechnology, vol. 34, no. 4, pp. 264-275, 2016/04/01/ 2016.
[24]W. J. Oswald, H. B. Gotaas, C. G. Golueke, W. R. Kellen, E. F. Gloyna, and E. R. Hermann, Algae in Waste Treatment [with Discussion], Sewage and Industrial Wastes, vol. 29, no. 4, pp. 437-457, 1957.
[25]DOE, National Algal Biofuels Technology Review, 2016.
[26]C. Alcántara, E. Posadas, B. Guieysse, and R. Muñoz, Chapter 29 - Microalgae-based Wastewater Treatment, in Handbook of Marine Microalgae, S.-K. Kim, Ed. Boston: Academic Press, 2015, pp. 439-455.
[27]J. B. K. Park, R. J. Craggs, and A. N. Shilton, Wastewater treatment high rate algal ponds for biofuel production, Bioresource Technology, vol. 102, no. 1, pp. 35-42, 2011/01/01/ 2011.
[28]T. Cai, S. Y. Park, and Y. Li, Nutrient recovery from wastewater streams by microalgae: status and prospects, Renewable and Sustainable Energy Reviews, vol. 19, pp. 360-369, 2013.
[29]G. G. Maidment and R. M. Tozer, Combined cooling heat and power in supermarkets, Applied Thermal Engineering, vol. 22, no. 6, pp. 653-665, 2002/04/01/ 2002.
[30]M. Nazari-Heris, B. Mohammadi-Ivatloo, and G. B. Gharehpetian, A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives, Renewable and Sustainable Energy Reviews, vol. 81, pp. 2128-2143, 2018/01/01/ 2018.
[31]B. T. Aklilu and S. I. Gilani, Mathematical modeling and simulation of a cogeneration plant, Applied Thermal Engineering, vol. 30, no. 16, pp. 2545-2554, 2010/11/01/ 2010.
[32]K. Aasberg-Petersen, C. S. Nielsen, I. Dybkjær, and J. Perregaard, Large scale methanol production from natural gas, Haldor Topsoe, vol. 22, 2008.
[33]W. Wu, S.-B. Yang, J.-J. Hwang, and X. Zhou, Design, modeling, and optimization of a lightweight MeOH-to-H2 processor, International Journal of Hydrogen Energy, vol. 43, no. 31, pp. 14451-14465, 2018/08/02/ 2018.
[34]L. J. Blomen and M. N. Mugerwa, Fuel cell systems. Springer Science & Business Media, 2013.
[35]B. Allaoua, B. Draoui, and D. Belatrache, Study of the energy performance of a PEM fuel cell vehicle, International Journal of Renewable Energy Research (IJRER), vol. 7, no. 3, pp. 1395-1402, 2017.
[36]F. Musio et al., PEMFC system simulation in MATLAB-Simulink® environment, International Journal of Hydrogen Energy, vol. 36, no. 13, pp. 8045-8052, 2011.
[37]M. A. Fetcenko et al., Recent advances in NiMH battery technology, Journal of Power Sources, vol. 165, no. 2, pp. 544-551, 2007/03/20/ 2007.
[38]L. Gaines and R. Cuenca, Costs of lithium-ion batteries for vehicles, Argonne National Lab., IL (US), 2000.
[39]H. Venkatasetty and Y. Jeong, Recent advances in lithium-ion and lithium-polymer batteries, in Seventeenth Annual Battery Conference on Applications and Advances. Proceedings of Conference (Cat. No. 02TH8576), 2002: IEEE, pp. 173-178.
[40]J. P. Aditya and M. Ferdowsi, Comparison of NiMH and Li-ion batteries in automotive applications, in 2008 IEEE Vehicle Power and Propulsion Conference, 2008: IEEE, pp. 1-6.
[41]F. a. R. A. Department for Environment, E. a. R. A. N. I. Department of Agriculture, K. a. A. S. Welsh Government, and R. a. E. S. a. A. S. The Scottish Government. (2019). Agriculture in the United Kingdom [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/848641/AUK_2018_09jul19a.pdf.
[42] [Online]. Available: http://www.nabim.org.uk/wheat.
[43]P. Konvalina et al., Differences in grain/straw ratio, protein content and yield in landraces and modern varieties of different wheat species under organic farming, Euphytica, vol. 199, no. 1, pp. 31-40, 2014/09/01 2014.
[44]N. Van Duivenbooden, C. De Wit, and H. Van Keulen, Nitrogen, phosphorus and potassium relations in five major cereals reviewed in respect to fertilizer recommendations using simulation modelling, Fertilizer Research, vol. 44, no. 1, pp. 37-49, 1995.
[45]Y. Gan, B. C. Liang, L. Liu, X. Wang, and C. McDonald, C : N ratios and carbon distribution profile across rooting zones in oilseed and pulse crops, Crop and Pasture Science, vol. 62, pp. 496-503, 07/28 2011.
[46]H. Li et al., Mass balances and distributions of C, N, and P in the anaerobic digestion of different substrates and relationships between products and substrates, Chemical Engineering Journal, vol. 287, pp. 329-336, 2016/03/01/ 2016.
[47]Y. Liu and J. Chen, Phosphorus cycle, 2014.
[48]T. L. T. Nguyen, J. E. Hermansen, and L. Mogensen, Fossil energy and GHG saving potentials of pig farming in the EU, Energy Policy, vol. 38, no. 5, pp. 2561-2571, 2010/05/01/ 2010.
[49]M. Safa, S. Samarasinghe, and M. Mohssen, A field study of energy consumption in wheat production in Canterbury, New Zealand, Energy Conversion and Management, vol. 52, no. 7, pp. 2526-2532, 2011/07/01/ 2011.
[50]E. B. Sydney, A. C. Novak, J. C. de Carvalho, and C. R. Soccol, Chapter 4 - Respirometric Balance and Carbon Fixation of Industrially Important Algae, in Biofuels from Algae, A. Pandey, D.-J. Lee, Y. Chisti, and C. R. Soccol, Eds. Amsterdam: Elsevier, 2014, pp. 67-84.
[51]L. Lardon, A. Hélias, B. Sialve, J.-P. Steyer, and O. Bernard, Life-Cycle Assessment of Biodiesel Production from Microalgae, Environmental Science & Technology, vol. 43, no. 17, pp. 6475-6481, 2009/09/01 2009.
[52]J. Sheehan, T. Dunahay, J. Benemann, and P. Roessler, Look back at the US department of energy's aquatic species program: biodiesel from algae; close-out report, National Renewable Energy Lab., Golden, CO.(US), 1998.
[53]P. Collet, A. Hélias, L. Lardon, M. Ras, R.-A. Goy, and J.-P. Steyer, Life-cycle assessment of microalgae culture coupled to biogas production, Bioresource Technology, vol. 102, no. 1, pp. 207-214, 2011/01/01/ 2011.
[54]M. Ras, L. Lardon, S. Bruno, N. Bernet, and J.-P. Steyer, Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris, Bioresource Technology, vol. 102, no. 1, pp. 200-206, 2011/01/01/ 2011.
[55]M. Solé-Bundó, C. Eskicioglu, M. Garfí, H. Carrère, and I. Ferrer, Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment, Bioresource Technology, vol. 237, pp. 89-98, 2017/08/01/ 2017.
[56](2016). Digestate and compost use in agriculture [Online]. Available: http://www.wrap.org.uk/sites/files/wrap/Digestate_compost_good_practice_guide_reference_version.pdf.
[57]I. K. Thomsen, J. E. Olesen, H. B. Møller, P. Sørensen, and B. T. Christensen, Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces, Soil Biology and Biochemistry, vol. 58, pp. 82-87, 2013/03/01/ 2013.
[58]M. Wang, E. Lee, Q. Zhang, and S. J. Ergas, Anaerobic Co-digestion of Swine Manure and Microalgae Chlorella sp.: Experimental Studies and Energy Analysis, BioEnergy Research, vol. 9, no. 4, pp. 1204-1215, 2016/12/01 2016.
[59]L. Hamelin, I. Naroznova, and H. Wenzel, Environmental consequences of different carbon alternatives for increased manure-based biogas, Applied Energy, vol. 114, pp. 774-782, 2014/02/01/ 2014.
[60]A. H. Strømman, C. Solli, and E. G. Hertwich, Hybrid life-cycle assessment of natural gas based fuel chains for transportation, Environmental science & technology, vol. 40, no. 8, pp. 2797-2804, 2006.
[61]SimaPro 8.3.0.0 Database, ed.
[62]V. Piemonte, M. D. Falco, P. Tarquini, and A. Giaconia, Life Cycle Assessment of a high temperature molten salt concentrated solar power plant, Solar Energy, vol. 85, no. 5, pp. 1101-1108, 2011/05/01/ 2011.
[63]J. Burkhardt, A. Patyk, P. Tanguy, and C. Retzke, Hydrogen mobility from wind energy – A life cycle assessment focusing on the fuel supply, Applied Energy, vol. 181, pp. 54-64, 2016/11/01/ 2016.
[64]M. Spielmann and H.-J. Althaus, Can a prolonged use of a passenger car reduce environmental burdens? Life Cycle analysis of Swiss passenger cars, Journal of Cleaner Production, vol. 15, no. 11, pp. 1122-1134, 2007/01/01/ 2007.
[65]T. M. Corporation. [Online]. Available: https://ssl.toyota.com/mirai/fcv.html.
[66]雷壹鈞, 以微藻生產生質燃料製程之經濟與生命週期評估模型建立與分析, 2018.
[67]A. Pandey, D.-J. Lee, Y. Chisti, and C. R. Soccol, Biofuels from Algae. 2014.
[68]K. Frank. (2020). Farmland Index [Online]. Available: https://content.knightfrank.com/research/157/documents/en/english-farmland-index-q1-2020-7079.pdf.
[69]E. C. Partnership. (2015). Combined Heat and Power (CHP) Level 1 Feasibility Analysis [Online]. Available: https://www.epa.gov/sites/production/files/2015-07/documents/combined_heat_and_power_chp_level_1_feasibility_analysis_ethanol_facility.pdf.
[70]C. L. G. Ministry of Housing, UK. (2017). Land value estimates for policy appraisal 2017 [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/710539/Land_Values_2017.pdf.
[71]F. Tufaner and Y. Avsar, Economic analysis of biogas production from small scale anaerobic digestion systems for cattle manure, vol. 2, pp. 6-12, 01/03 2019.
[72]D. Balussou, A. Kleyböcker, R. McKenna, D. Möst, and W. Fichtner, An Economic Analysis of Three Operational Co-digestion Biogas Plants in Germany, Waste and Biomass Valorization, vol. 3, 03/01 2011.
[73]G. Collodi, G. Azzaro, N. Ferrari, and S. Santos, Demonstrating Large Scale Industrial CCS through CCU – A Case Study for Methanol Production, Energy Procedia, vol. 114, pp. 122-138, 2017/07/01/ 2017.
[74](2020). Straw prices for the week [Online]. Available: http://www.pig-world.co.uk/news/weekly_bhsma_straw-prices.html.
[75]J. Cristóbal, C. Caldeira, S. Corrado, and S. Sala, Techno-economic and profitability analysis of food waste biorefineries at European level, Bioresource Technology, vol. 259, pp. 244-252, 2018/07/01/ 2018.
[76]eurostat. (2020). [Online]. Available: https://ec.europa.eu/eurostat/databrowser/view/ten00118/default/table?lang=en.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文