(44.192.70.216) 您好!臺灣時間:2021/05/09 18:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳豪彥
研究生(外文):Hao-YanChen
論文名稱:主鏈含三苯胺與芴酮之雙極寡聚物: 合成、鑑定及光電應用
論文名稱(外文):Bipolar Oligomers Consisting of Triphenylamine and Fluorenone Moieties: Synthesis, Characterization and Optoelectronic Application
指導教授:陳雲陳雲引用關係
指導教授(外文):Yun Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:88
中文關鍵詞:高分子發光二極體雙極材料三苯胺電洞緩衝材料濕式製程
外文關鍵詞:PLEDsbipolar materialtriphenylaminehole-buffersolution process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高分子發光二極體(PLEDs)具有良好的發光效率,近年來受到大量注目。其原理是外加一偏壓,分別從陽極和陰極注入電洞與電子,遷移至發光層再結合後放出光,所以載子(電洞與電子)的注入與傳輸決定了元件的效率。然而在有機材料中電洞的注入及移動速率通常高於電子,造成發光層中電洞與電子數目不平衡,再結合比率下降,導致元件效率降低,減緩電洞注入與傳輸速率是提高元件效率的方法之一。
本研究以Suzuki coupling reaction合成三種主鏈含三苯胺與芴酮之寡聚物(P1-P3),並將P2作為電洞緩衝層(HBL)應用於高分子有機發光二極體。P1-P3經由核磁共振光譜(1H-NMR)鑑定其結構,並分析熱性質、光學性質、及電化學性質,也探討元件光電性質和有機膜特性。P1-P3的熱裂解溫度(Thermal Decomposition Temperature, Td)皆大於300oC,P2、P3的玻璃轉移溫度(Glass Transition Temperature, Tg)約為55 oC,P1則沒觀察到Tg;P1-P3因為扭曲型分子內電荷轉移(TICT)以及三苯胺的震動、轉動,螢光量子效率不高。由循環伏安法計算得P1-P3的HOMO/LUMO能階分別為-5.20/-3.60 eV,-5.15/-3.59 eV和-5.15/-3.59 eV。將P2利用濕式製程的旋轉塗佈法成膜至基材上製備元件 [ITO/PEDOT:PSS/P2(HBL)/SY-PPV/BCP/LiF/Al],其元件最大亮度為5,377 cd/m2,最大電流效率為2.62 cd/A,表現優於無加入電洞緩衝材料之元件[ITO/PEDOT:PSS/SY-PPV/BCP/LiF/Al](2,906 cd/m2, 0.48 cd/A)。
由研究結果顯示,以P2作為電洞緩衝層能提高電子與電洞在結合比率,進而提升元件的效率,另外,P2能夠以濕式製程成膜,元件製程簡單且成本低,綜合以上兩點,P2作為電洞緩衝材料具有發展潛力。
In recent years, polymer light-emitting diodes (PLEDs) have drawn lots of attention because of good emissive ability. Carriers’ balance is essential to obtain high emission efficiency in PLEDs. In most organic materials, the injection and transport rates of holes are faster than electrons, leading to imbalanced carriers in light emitting layer (EML) and degraded device efficiency. Therefore, slowing down hole mobility is one of the effective ways to enhance device performance.
In this study, we have synthesized three oligomers (P1, P2, P3) which contain triphenylamine and fluorenone moieties in main chain by Suzuki coupling reaction. P1-P3 possess high thermal decomposition temperature (Td 〉 300 oC) because of rigid backbone. The HOMO/LUMO energy levels of P1, P2 and P3 are -5.20/-3.60, -5.15/-3.59 and -5.15/-3.59 eV, respectively, as estimated from cyclic voltammetric measurements. Multilayer PLEDs have been successfully fabricated by spin-coating process [ITO/PEDOT:PSS/P2 (HBL)/SY-PPV/BCP/LiF/Al]. The maximum luminance and maximum current efficiency of P2-based device were 5,377 cd/m2 and 2.62 cd/A, higher than the device without HBL (2,906 cd/m2, 0.48 cd/A). Current results indicate that P2 is a potiential hole-buffering material for optoelectronic devices.
摘要 III
目錄 XIII
圖目錄 XVI
表目錄 XX
第一章 緒論 1
1-1. 前言 1
1-2. 理論基礎 4
1-2-1. 有機材料的共軛導電特性[5] 4
1-2-2. 螢光理論 5
1-2-3. 影響螢光強度的主要因素 8
1-2-4. 分子間激發態(Interchain Excitons)和分子內激發態(Intrachain Excitons)[10, 11] 10
1-2-5. 能量轉移機制[14, 15] 12
1-3. 有機材料發光原理[16-19] 14
1-3-1. 光激發光 14
1-3-2. 電激發光 15
1-4. 元件結構 16
1-4-1. 單層元件[21, 22] 16
1-4-2. 多層元件[23] 18
1-5. 有機發光二極體的效率[23, 24] 19
1-5-1. 有機發光二極體效率之影響參數 19
1-5-2. 增進電子與電洞數目平衡的方法 20
第二章 文獻回顧 22
2-1. 有機發光二極體材料的分類[29] 22
2-1-1. 發光材料 22
2-1-2. 電洞注入/傳輸材料(HIM/HTM)[23] 24
2-1-3. 電子注入/傳輸材料(EIM/ETM) 25
2-1-4. 電洞緩衝材料(HBM) 26
2-2. 有機層在元件的製程方法 28
2-2-1. 真空熱蒸鍍 28
2-2-2. 濕式製程 28
2-3. Suzuki-Miyaura Coupling Reaction[47] 30
2-4. 研究動機 31
第三章 實驗內容 32
3-1. 實驗裝置與設備 32
3-2. 鑑定儀器 34
3-3. 物性與光電測量儀器 34
3-4. 實驗藥品與材料 42
3-5. 反應步驟與結果 44
3-6. 元件製作及測量 47
3-6-1. 元件蝕刻、清洗與表面處理 48
3-6-2. 電洞注入層、電洞緩衝層與發光層的製備 48
3-6-3. 電洞/激子阻擋層、電子注入層與陰極的製備 49
3-6-4. Hole-Only元件製備 50
3-6-5.元件測量 51
第四章 結果與討論 52
4-1. 化合物的合成與鑑定 52
4-1-1. 核磁共振光譜(NMR) 52
4-2. 熱性質分析 57
4-2-1. 熱重分析(TGA) 57
4-2-2. 微差式掃描熱卡計分析(DSC) 58
4-3. 光學性質分析 60
4-3-1. UV/Vis吸收光譜及PL放光光譜 60
4-3-2. 相對螢光量子效率[54] 65
4-4. 電化學性質分析 67
4-4-1. 循環伏安法 67
4-5. 模擬分析 71
4-6. P2成膜性質分析 73
4-7. 高分子發光二極體元件特性 75
4-7-1. 元件結構與能階 75
4-7-2. P2元件之光電性質 76
4-7-3. Hole-only元件(HOD) 80
第五章 結論 82
第六章 參考資料 84
[1]M. Pope, H. P. Kallmann, and P. Magnante, “Electroluminescence in organic crystals, The Journal of Chemical Physics, 38(8), 2042-2043 (1963).
[2]C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes, Applied Physics Letters, 51(12), 913-915 (1987).
[3]J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers, Nature, 347(6293), 539 (1990).
[4]段啟聖, 化工資訊雜誌與商情, 2005. 第26期: p. 40.
[5]郭昭輝, 塑膠資訊雜誌, 2002.
[6]K. M. Coakley, and M. D. McGehee, “Conjugated polymer photovoltaic cells, Chemistry of Materials, 16(23), 4533-4542 (2004).
[7]J. R. Lakowicz, Principles of Fluorescence Spectroscopy, (1999), Kluwer Academic/Plenum Publishers, New York (2004).
[8]M. Lax, “The Franck‐Condon Principle and Its Application to Crystals, The Journal of Chemical Physics, 20(11), 1752-1760 (1952).
[9]B. Valeur, and M. N. Berberan-Santos, Molecular fluorescence: principles and applications: John Wiley & Sons (2012).
[10]S. Beck, A. Hallam, and A. M. North, “Excimer and charge-transfer complex trapping of excitons in carbazole containing polymers, Polymer, 20(10), 1177-1179 (1979).
[11]W. T. Yip, and D. H. Levy, “Excimer/exciplex formation in van der Waals dimers of aromatic molecules, Journal of Physical Chemistry, 100(28), 11539-11545 (1996).
[12]J. Guillet, “Polymer photophysics and photochemistry, (1985).
[13]M. Bayda, F. Dumoulin, G. L. Hug, J. Koput, R. Gorniak, and A. Wojcik, “Fluorescent H-aggregates of an asymmetrically substituted mono-amino Zn(ii) phthalocyanine, Dalton Transactions, 46(6), 1914-1926 (2017).
[14]Z. H. Kafafi, Organic electroluminescence: CRC press (2005).
[15]V. May, and O. Kühn, “Charge and energy transfer dynamics in molecular systems, 2nd, Revised and Enlarged Edition, Wiley-VCH, 490 (2004).
[16]陳信宏、陳雲, “中工高雄會刊, 2006. 第3期: p. 72.
[17]葉昆明、陳雲, “科學發展, 2005. 第385期: p. 58.
[18]黃孝文、陳雲, “化工資訊月刊, 2001. 第3期: p. 8.
[19]K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers, Chemical Reviews, 107(4), 1233-1271 (2007).
[20]M. A. Baldo, M. E. Thompson, and S. R. Forrest, “High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer, Nature, 403(6771), 750-753 (2000).
[21]C. C. Wu, J. C. Sturm, R. A. Register, J. Tian, E. P. Dana, and M. E. Thompson, “Efficient organic electroluminescent devices using single-layer doped polymer thin films with bipolar carrier transport abilities, IEEE Transactions on Electron Devices, 44(8), 1269-1281 (1997).
[22]G. G. Malliaras, J. R. Salem, P. J. Brock, and C. Scott, “Electrical characteristics and efficiency of single-layer organic light-emitting diodes, Physical Review B, 58(20), 13411-13414 (1998).
[23]陳金鑫,黃孝文, OLED: 有機電激發光材料與元件: 五南圖書出版股份有限公司 (2005).
[24]M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. Vardeny, “Formation cross-sections of singlet and triplet excitons in π-conjugated polymers, Nature, 409(6819), 494-497 (2001).
[25]T. W. Lee, T. Noh, H. W. Shin, O. Kwon, J. J. Park, B. K. Choi, M. S. Kim, D. W. Shin, and Y. R. Kim, “Characteristics of solution‐processed small‐molecule organic films and light‐emitting diodes compared with their vacuum‐deposited counterparts, Advanced Functional Materials, 19(10), 1625-1630 (2009).
[26]H. Gao, C. Qin, H. Zhang, S. Wu, Z.-M. Su, and Y. Wang, “Theoretical characterization of a typical hole/exciton-blocking material bathocuproine and its analogues, The Journal of Physical Chemistry A, 112(38), 9097-9103 (2008).
[27]W.-C. Lin, H.-W. Lin, E. Mondal, and K.-T. Wong, “Efficient solution-processed green and white phosphorescence organic light-emitting diodes based on bipolar host materials, Organic Electronics, 17(1-8) (2015).
[28]V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, and S. R. Forrest, “New charge-carrier blocking materials for high efficiency OLEDs, Organic Electronics, 4(2), 77-87 (2003).
[29]J. L. Segura, “The chemistry of electroluminescent organic materials, Acta Polymerica, 49(7), 319-344 (1998).
[30]G. Gustafsson, Y. Cao, G. Treacy, F. Klavetter, N. Colaneri, and A. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers, Nature, 357(6378), 477 (1992).
[31]M.-C. Choi, Y. Kim, and C.-S. Ha, “Polymers for flexible displays: From material selection to device applications, Progress in Polymer Science, 33(6), 581-630 (2008).
[32]A. J. Heeger, “Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture), Angewandte Chemie International Edition, 40(14), 2591-2611 (2001).
[33]M. Y. Wong, “Recent Advances in Polymer Organic Light-Emitting Diodes (PLED) Using Non-conjugated Polymers as the Emitting Layer and Contrasting Them with Conjugated Counterparts, Journal of Electronic Materials, 46(11), 6246-6281 (2017).
[34]J. Li, J. Liu, C. Gao, J. Zhang, and H. Sun, “Influence of MWCNTs doping on the structure and properties of PEDOT: PSS films, International Journal of Photoenergy, (2009).
[35]E. H. Martin, and J. Hirsch, “DETERMINATION OF CARRIER MOBILITY IN PLASTICS BY A TIME-OF-FLIGHT METHOD, Solid State Communications, 7(10), 783 (1969).
[36]A. Babel, and S. A. Jenekhe, “High electron mobility in ladder polymer field-effect transistors, Journal of the American Chemical Society, 125(45), 13656-13657 (2003).
[37]G. Horowitz, “Organic field-effect transistors, Advanced Materials, 10(5), 365-377 (1998).
[38]R. Kepler, “Charge carrier production and mobility in anthracene crystals, Physical Review, 119(4), 1226 (1960).
[39]S. A. Jenekhe, and S. Yi, “Efficient photovoltaic cells from semiconducting polymer heterojunctions, Applied Physics Letters, 77(17), 2635-2637 (2000).
[40]X. Zhang, and S. A. Jenekhe, “Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions, Macromolecules, 33(6), 2069-2082 (2000).
[41]K.-I. Nakayama, M. Yokoyama, Y.-J. Pu, and J. Kido, Organic Field-Effect Transistors Using Hetero-Layered Structure with OLED Materials, InTech (2011).
[42]D. Grozea, A. Turak, Y. Yuan, S. Han, Z. Lu, and W. Kim, “Enhanced thermal stability in organic light-emitting diodes through nanocomposite buffer layers at the anode/organic interface, Journal of Applied Physics, 101(3), 033522 (2007).
[43]S. Tadayyon, H. Grandin, K. Griffiths, P. Norton, H. Aziz, and Z. Popovic, “CuPc buffer layer role in OLED performance: a study of the interfacial band energies, Organic Electronics, 5(4), 157-166 (2004).
[44]E. Forsythe, M. Abkowitz, and Y. Gao, “Tuning the carrier injection efficiency for organic light-emitting diodes, The Journal of Physical Chemistry B, 104(16), 3948-3952 (2000).
[45]R. Kadhim, M. Muhi, and A. Najim, “Structure and optical properties of pbI2 thin film by thermal evaporation technique, Journal of University of Anbar for Pure science, 12, 2 (2018).
[46]J.-H. Jou, S. Sahoo, D. K. Dubey, R. A. K. Yadav, S. S. Swayamprabha, and S. D. Chavhan, “Molecule-based monochromatic and polychromatic OLEDs with wet-process feasibility, Journal of Materials Chemistry C, 6(43), 11492-11518 (2018).
[47]N. Miyaura, and A. Suzuki, “Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst, Journal of the Chemical Society, Chemical Communications, 19, 866-867 (1979).
[48]Q. Zhang, H. Kuwabara, W. J. Potscavage, S. Huang, Y. Hatae, T. Shibata, and C. Adachi, “Anthraquinone-Based Intramolecular Charge-Transfer Compounds: Computational Molecular Design, Thermally Activated Delayed Fluorescence, and Highly Efficient Red Electroluminescence, Journal of the American Chemical Society, 136(52), 18070-18081 (2014).
[49]B. Zhang, H. Wu, Z. Wang, A. Qin, and B. Z. Tang, “Planarized intramolecular charge transfer on triphenylamine-modified pyrazine and its application in organic light-emitting diodes, Journal of Materials Chemistry C, 8(14), 4754-4762 (2020).
[50]A. Chaskar, H. F. Chen, and K. T. Wong, “Bipolar host materials: a chemical approach for highly efficient electrophosphorescent devices, Advanced Materials, 23(34), 3876-3895 (2011).
[51]F. Wang, D. Liu, J. Li, and M. Ma, “Modulation of n-Type Units in Bipolar Host Materials toward High-Performance Phosphorescent OLEDs, ACS Applied Materials & Interfaces, 9(43), 37888-37897 (2017).
[52]N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, “A Practical Beginner’s Guide to Cyclic Voltammetry, Journal of Chemical Education, 95(2), 197-206 (2017).
[53]黃英碩, “掃描探針顯微術的原理及應用, 科儀新知, 第144期: P. 7-17 (2005).
[54]G. A. Crosby, and J. N. Demas, “Measurement of photoluminescence quantum yields. Review, The Journal of Physical Chemistry, 75(8), 991-1024 (1971).
[55]W. Rettig, “Charge Separation in Excited States of Decoupled Systems—TICT Compounds and Implications Regarding the Development of New Laser Dyes and the Primary Process of Vision and Photosynthesis, Angewandte Chemie International Edition in English, 25(11), 971-988 (1986).
[56]S. R. Amrutha, and M. Jayakannan, “Probing the π-Stacking Induced Molecular Aggregation in π-Conjugated Polymers, Oligomers, and Their Blends of p-Phenylenevinylenes, The Journal of Physical Chemistry B, 112(4), 1119-1129 (2008).
[57]C. Murawski, K. Leo, and M. C. Gather, “Efficiency roll-off in organic light-emitting diodes, Advanced Materials, 25(47), 6801-6827 (2013).
[58]C. T. Liao, H. F. Chen, H. C. Su, and K. T. Wong, “Tailoring balance of carrier mobilities in solid-state light-emitting electrochemical cells by doping a carrier trapper to enhance device efficiencies, Journal of Materials Chemistry, 21(44), 17855 (2011).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔