(3.235.245.219) 您好!臺灣時間:2021/05/07 22:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡明芳
研究生(外文):Ming-FangTsai
論文名稱:無氟疏水/親油紡織品用於分離水在油中乳液之研究
論文名稱(外文):Fluorine-free hydrophobic/oleophilic fabrics for the separation of water-in-oil (W/O) emulsions
指導教授:楊毓民楊毓民引用關係
指導教授(外文):Yu-Min Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:125
中文關鍵詞:無氟材料疏水/親油紡織品油-在分離膜水在油中乳化液
外文關鍵詞:Fluorine-free materialshydrophobic/oleophilic fabricsoil-water separation membranewater-in-oil emulsion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以方便取得、價廉、工業發展成熟的聚脂纖維紡織品做為基材,使用環保的材料進行表面修飾,製備出疏水/親油的分離膜,用以分離無界面活性劑 (surfactant-free) 與含有界面活性劑 (surfactant-stabilized) 的水在油中 (W/O) 乳化液。材料選用無氟的正辛基三乙氧基矽烷 (n-octyltriethoxysilane) 來製備疏水修飾二氧化矽奈米粒子 (hydrophobically modified SiO2, HM-SiO2),與同樣無氟的聚二甲基矽氧烷 (PDMS) 交聯高分子混合,並利用浸塗法來修飾紡織品。
實驗結果顯示,以PDMS/HM-SiO2浸塗製成的疏水/親油紡織品,透過增加HM-SiO2的濃度以及重複塗佈的次數可以增加分離乳化液的成功率。其從表面形態以及分離結果可以證實主要影響分離成功的因素是分離膜的孔洞大小,並不是疏水的濕潤型態 (wetting mode) 之影響。而不論對於分離有、無界面活性劑 (Span 80) 的水在甲苯中乳化液,分離效率皆達99%。分離通量則隨著HM-SiO2濃度和重複塗佈次數的增加而降低。此外,增加乳化劑的濃度也會使分離通量降低。
In this work, a eco-friendly hydrophobic/oleophilic fabrics are prepared for separating the surfactant-free and surfactant-stabilized water-in-oil (W/O) emulsion. The substrates are using polyester fabrics because they are low-cost, easily accessible and their mature development of industry. In addition, the fluorine-free materials are used. The n-octyltriethoxysilane is used to hydrophobically modify SiO2 (HM-SiO2) and then blend with polydimethylsiloxane (PDMS) to form the dipping solution. Then using dip-coating to fabricate hydrophobic/oleophilic fabrics.
In the results, increasing the concentration of HM-SiO2 and coating times can increase the success opportunity of separating W/O emulsions. The surface morphology and separation results reveal that pore size is the main factor to separate W/O emulsion, and different wetting modes do not influence the results. Furthermore, the separation efficiency of both surfactant-free and surfactant-stabilized W/O emulsions separations are up to 99%. The flux will decrease when increasing concentration of HM-SiO2 and coating times. Moreover, the flux will decrease when increasing the concentration of surfactant.
摘要 I
Extended Abstract II
致謝 XX
目錄 XXI
表目錄 XXVI
圖目錄 XXVIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與研究目的 1
第二章 文獻回顧 3
2.1 傳統油-水分離方法 3
2.1.1 傳統油-水分離方法-物理方法 4
2.1.2 傳統油-水分離方法-化學方法 6
2.1.3 傳統油-水分離方法-物理化學方法 7
2.1.4 傳統油-水分離方法-生物方法 8
2.2 基於特殊濕潤性質之油-水分離應用 9
2.2.1 超疏水/超親油表面 11
2.2.2 超親水/超親油表面 15
2.2.3 超親水/超疏油表面 18
2.2.4 超疏水/超疏油表面 20
2.3 超疏水表面理論 22
2.3.1 蓮花效應(Lotus effect) 22
2.3.2 超疏水表面之表徵 26
2.3.3 楊氏 (Young) 方程式 29
2.3.4 溫佐 (Wenzel) 方程式 30
2.3.5 卡西-巴斯特 (Cassie and Baxter) 方程式 31
2.3.6 介於溫佐和卡西-巴斯特兩狀態之間的過渡狀態 32
2.3.7 傾斜角與表面濕潤性質之關係 34
2.4 二氧化矽疏水修飾 35
2.5 特殊濕潤性質表面於油-水乳化液之分離 37
2.5.1 超疏水/超親油表面應用於乳化液的分離 38
2.5.2 超親水/水下超疏油表面應用於乳化液的分離 45
2.5.3 可切換式特殊濕潤性質表面應用於乳化液的分離 48
第三章 實驗內容 51
3.1 分離膜及吸收綿基材 51
3.2 實驗藥品 51
3.2.1 製備疏水改質二氧化矽奈米粒子 51
3.2.2 製備用於表面疏水/親油改質之浸鍍液 52
3.2.3 測試液體 52
3.3 儀器設備與裝置 54
3.3.1 Milli-Q超純水系統 54
3.3.2加熱攪拌器 (Hot plate stirrer) 54
3.3.3 超音波震盪槽 (Ultrasonicator) 55
3.3.4 箱型高溫爐 (Muffle furnace) 55
3.3.5 掃描式電子顯微鏡 (Scanning electron microscope) 56
3.3.6 接觸角分析儀 (Contact angle measure analyzer) 58
3.3.7 均質機 (Homogenizier) 59
3.3.8 動態雷射光散儀 (Dynamic Light Scattering, DLS) 60
3.3.9 濁度計 (Turbidmeter) 61
3.4 實驗方法 62
3.4.1 聚脂纖維紡織品之前處理 62
3.4.2 疏水化改質SiO2奈米粒子 (HM-SiO2) 製備 62
3.4.3 表面疏水親油改質之浸鍍液的配製 63
3.4.3.1 PDMS溶液 63
3.4.3.2 PDMS/HM-SiO2溶液 63
3.4.4 疏水/親油紡織品之製備 63
3.4.5 水在油中乳化液之製備 64
3.4.5.1 無界面活性劑之水在油中乳化液 64
3.4.5.2 含界面活性劑之水在油中乳化液 64
3.4.6 水在油中乳化液之分離 64
第四章 結果與討論 66
4.1 無氟疏水/親油紡織品之製備 67
4.1.1 PET紡織品塗佈PDMS/HM-SiO2之濕潤性質 67
4.1.2 調控不同HM-SiO2濃度對表面之濕潤性值影響 69
4.1.3 調控不同PDMS濃度對表面之濕潤性值與耐久性之影響 71
4.1.4 以重複塗佈步驟製備緻密表面 80
4.2 無氟疏水/親油紡織品用於水在油中乳化液的分離 91
4.2.1 水在油中乳化液之性質 91
4.2.1.1 無界面活性劑之水在油中乳化液性質 91
4.2.1.2 含界面活性劑之水在油中乳化液性質 (10 mM與16 mM) 94
4.2.2 水在油中乳化液之分離 102
4.2.2.1 無界面活性劑之水在油中乳化液分離 102
4.2.2.2含界面活性劑之水在油中乳化液分離 (10 mM與16 mM) 106
4.2.2.3表面形態對分離水在油中乳化液的影響 112
第五章 結論與建議 116
5.1 結論 116
5.1.1 無氟疏水/親油紡織品之製備 116
5.1.2 無氟疏水/親油紡織品用於水在油中乳化液的分離 117
5.2 建議 119
第六章 參考文獻 120
1. Y. X. Wu, and J. Y. Xu, Oil and water separation technology. Advances in Mechanics, 45, 2015.
2. G. L. Li, L. J. Guo, Flow patterns of oil-water liquid-liquid two-phase flow in helically coiled tubes. CIESC Journal, 51(2), 239-242, 2005.
3. Y. Zhou, Y. X. Wu, Z. C. Zheng, Q. S. Liu, and Q. P. Li, Research on oil-water separation technique1 numerical simulation in both straight and helical pipes. Journal of Hydrodynamics, 19(4), 540-546, 2004.
4. C. Y. Li, X. Liu, Numerical simulation on oil-water separation in spiral pipe after different flow velocity. Journal of Liaoning Shihua University, 32(1), 32-35, 2012.
5.D. T. Gong, Y. X. Wu, Z. C. Zheng, J. Guo, J. Zhang, and C. Tang, Numerical simulation of the oil-water two-phase flow in a helical tube with variable mass flow rates. Journal of Hydrodynamics, 21(5), 2006.
6. W. S. Barnickel, Process for treating crude oil, United states patent office, 683619, 1914.
7. N. Xia, Experimental research of coarse graining technology in improving the efficiency of oil-water separation. Master Thesis, Northeast Petroleum University, 2012.
8. N. Nadarajah, A. Singh, and O. P. Ward, Evaluation of a mixed bacterial culture for de-emulsification of water-in-petroleum oil emulsions. World Journal of Microbiology and Biotechnology, 18(5), 435-440, 2002.
9. Z. X. Sun, Research and application for oil/water separation based on biodearadable materials PLA. Master Thesis, Northeast Normal University, 2013.
10. G. Kwon, E. Post, and A. Tuteja, Membranes with selective wettability for the separation of oil–water mixtures. MRS communications, 5(3), 475-494, 2015.
11. R. K. Gupta, G. J. Dunderdale, M. W. England, and A. Hozumi, Oil/water separation techniques: a review of recent progresses and future directions. J. Mater. Chem. A, 5(31), 16025-16058, 2017.
12. J. Wu, J. Chen, K. Qasim, J. Xia, W. Lei, and B. Wang, A hierarchical mesh film with superhydrophobic and superoleophilic properties for oil and water separation. J. Chem. Technol. Biotechnol.,2012, 87, 427-430.
13. Y. Cao, X. Zhang, L. Tao, K. Li, Z. Xue, L. Feng, and Y. Wei, ACS Appl. Mater. Interfaces, 5(10), 4438–4442, 2013.
14. C. H. Xue, Y. R. Li, J. L. Hou, L. Zhang, J. Z. Ma, and S. T. Jia, Self-roughened superhydrophobic coatings for continuous oil–water separation, Journal of Materials Chemistry A, 3(19), 10248-10253, 2015.
15. C. J. Chen, W. H. Li, W. Y. Chen, and Y. M. Yang, Fabrication of multifunctional polyester fabrics by using fluorinated polymer coatings, Fibers and Polymers, 20(10), 2120-2126, 2019.
16. J. Zhnag and S. Seeger, Polyester Materials with Superwetting silicone nanofilaments for oil/water separation and selective oil absorption, Advanced Functional Materials, 21(24), 4632-4632, 2011.
17. J. Li, L. shi, Y. Chen, Y. Zhang, Z. Guo, B. Su, and W. Liu, Stable superhydrophobic coatings from thiol-ligandnanocrystals and their application in oil/water separation, Journal of Materials Chemistry, 22(19), 9774-9781, 2012.
18. E. Richard, R. V. Lakshmi, S. T. Aruna, and B. Basu, A simple cost-effective and eco-friendly wet chemical process for the fabrication of superhydrophobic cotton fabrics, Applied Surface Science, 277, 302-309, 2013.
19. B. Wang, J. Li, G. Wang, W. Liang, Y. Zhang, L, Shi, Z. Guo, and W. Liu, Methodology for robust superhydrophobic fabrics and sponges from in situ growth of transition metal/metal oxide nanocrystals with thiol modification and their applications in oil/water separation, ACS Applied Materials & Interfaces, 5(5), 1827-1839, 2013.
20. C. H. Xue, P. T. Ji, P. Zhang, Y. R. Li, and S. T. Jia, Fabrication of superhydrophobic and superoleophilic textiles for oil–water separation, Applied Surface Science, 284, 464-471, 2013.
21. X. Zhou, Z. Zhang, X. Xu, F. Guo, X. Zhu, X. Men, and B. Ge, Robust and durable superhydrophobic cotton fabrics for oil/water separation, ACS Applied Materials & Interfaces, 5(15), 7208-7214, 2013.
22. F. Su, amd K. Yao, Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method, ACS Applied Materials & Interfaces, 6(11), 8762-8770, 2014.
23. X. Liu, L. Ge, W. Li, X. Wang, and F. Li, Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption, ACS Applied Materials & Interfaces, 7(1), 791-800, 2015.
24. J. Wang and Y. Chen, Oil-water separation capability of superhydrophobic fabrics fabricated via combining polydopamine adhesion with lotus‐leaf‐like structure, Journal of Applied Polymer Science, 132(39), 42614, 2015.
25. A. Singh and J. Singh, Fabrication of zirconia based durable superhydrophobic–superoleophilic fabrics using non fluorinated materials for oil-water separation and water purification, RSC advances, 6(105), 103632-103640, 2016.
26. S. W. Han, K. D. Kim, H. O. Seo, I. H. Kim, C. S. Jeon, J. E. An, J. H, Kim, S. Uhm, and U. D. Kim, Oil-water separation using superhydrophobic PET membranes fabricated via simple dip‐coating of PDMS–SiO2 nanoparticles, Macromolecular Materials and Engineering, 302(11), 1700218, 2017.
27. Q. Y. Cheng, C. S. Guan, M. Wang, Y. D. Li, and J. B. Zeng, Cellulose nanocrystal coated cotton fabric with superhydrophobicity for efficient oil/water separation, Carbohydrate Polymers, 199, 390-396, 2018.
28. X. Su, H. Li, X. Lai, L. Zhang, J. Wang, X. Liao, and X. Zeng, Vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surface on polyester textile for oil–water separation, ACS Applied Materials & Interfaces, 9(33), 28089-28099, 2017.
29. M. Liu, S. Wang, Z. Wei, Y. Song, and L. Jiang, Bioinspired design of a superoleophobic and low adhesive water/solid interface, Advanced Materials, 21(6), 665-669, 2009.
30. Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng, and L. Jiang, A novel superhydrophilic and underwater superoleophobic hydrogel‐coated mesh for oil/water separation, Advanced Materials, 23(37), 4270-4273, 2011.
31. C. Teng, X. Lu, G. Ren, Y. Zhu, M. Wan, and L. Jiang, underwater self‐cleaning PEDOT‐PSS hydrogel mesh for effective separation of corrosive and hot oil/water mixtures, Advanced Materials Interfaces, 1(6), 1400099, 2014.
32. B. Jing, H. Wang, K. Y. Lin, P. J. Mcginn, C. Na, and Y. Zhu, A facile method to functionalize engineering solid membrane supports for rapid and efficient oil–water separation, Polymer, 54(21), 5771-5778, 2013.
33. Q. Wen, J. Di, L. Jiang, J. Yu, and R. Xu, Zeolite-coated mesh film for efficient oil–water separation, Chemical Science, 4(2), 591-595, 2013.
34. A. Kota, G. Kwon, W. Choi, J. M. Mabry, and A. Tuteja, Hygro-responsive membranes for effective oil–water separation, Nature Communication, 3, 1025, 2012.
35. J. Yang, Z. Zhang, X. Xu, X. Zhu, X. Men, and X. Zhou, Superhydrophilic–superoleophobic coatings, Journal of Materials Chemistry, 22(7), 2834-2937, 2012.
36. J. Yang, H. Song , X. Yan, H. Tang, and C. Li, Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation, Cellulose, 21, 1851-1857, 2014.
37. X. Zhu, H. E. Loo, and R. Bai, A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications, Journal of Membrane Science, 436, 47-56, 2013.
38. X. Zhu, W. Tu, K. H. Wee, and R. Bai, Effective and low fouling oil/water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties, Journal of Membrane Science, 466, 36-44, 2014.
39. G. Kwon, A. K. Kota, Y. Li, A. Sohani, J. M. Mabry, and A. Tuteja, On-demand separation of oil-water mixtures, Advanced Materials, 24(27), 3666-3671, 2012.
40. W. Barthlott, and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 20 (1), 1-8, 1997.
41. C. Neinhuis, W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces, Annals of Botany, 79(6), 667-677, 1997.
42. J. Zimmermann, and S. Seeger, F. A. Reifler, Water shedding angle: a new technique to evaluate the water-repellent properties of superhydrophobic surfaces, Textile Research Journal, 79 (17), 1565-1570, 2009.
43. Z. Chu, and S. Seeger, Superamphiphobic surfaces, Chemical Society Reviews, 43 (8), 2784-2798, 2014.
44. S. Li, J. Huang, Z. Chen, G. Chen, and Y. Lai, A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications, Journal of Materials Chemistry A, 5(1), 31-55, 2017.
45. R. N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry, 28(8), 988-994, 1936.
46. A. Cassie, and S. Baxter, Wettability of porous surfaces, Transactions of the Faraday society, 40, 546-551, 1944.
47. X. J. Feng, and L. Jiang, Design and creation of superwetting/antiwetting surfaces, Advanced Materials, 18(23), 3063-3078, 2006.
48. E. Bormashenko, R. Grynyov, G. Chaniel, H. Taitelbaum, and Y. Bormashenko, Robust technique allowing manufacturing superoleophobic surfaces, Applied Surface Science, 270, 98-103, 2013.
49. X. Liu, Y. Liang, F. Zhou, and W. Liu, Extreme wettability and tunable adhesion: biomimicking beyond nature?, Soft Matter, 8(7), 2070-2086, 2012.
50. J. Bico, U. Thiele, and D. Que´re´, Wetting of textured surfaces, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206(1), 41-46, 2002.
51. A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, Designing superoleophobic surfaces, Science, 318(5856), 1618-1622, 2007.
52. H. Sun, Y. Xu, Y. Zhou, W. Gao, H. Zhao, amd W. Wang, Preparation of superhydrophobic nanocomposite fiber membranes by electrospinning poly(vinylidene fluoride)/silane coupling agent modified SiO2 nanoparticles, Journal of Applied Polymer Science, 134(13), 44501, 2016.
53. W. Zhang, N. Liu, Y. Gao, X. Lin, Y. Liu, and L. Feng, Superwetting porous materials for wastewater treatment: from immiscible oil/water mixture to emulsion separation, Advanced Materials Interfaces, 4(10), 1600029, 2017.
54. C. Chen, D. Weng, A. Mahmood, S. Chen, and J. Wang, Separation mechanism and construction of surfaces with special wettability for oil/water separation, ACS Applied Materials & Interfaces, 11(11), 11006-11027, 2019.
55. J. Zuo. J. Chen, X. Wen, S. Xu, and P. Pi, Advanced materials for separation of oil / water emulsion, Progress in Chemistry, 31(10), 1440-1458, 2019.
56. Z. Shi, W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, and L. Jiang, Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films, Advanced Materials, 25(17), 2422-2427, 2013.
57. Y. Cao, Y. Chen, N. Liu, X. Lin, L. Feng, and Y. Wei, Mussel-inspired chemistry and Stöber method for highly stabilized water-in-oil emulsions separation, Journal of Materials Chemistry A, 2(48), 20439-20443, 2014.
58. Y. Si, Q. Fu, X. Wang, J. Zhu, J. Yu, G. Sun, and B. Ding, Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions, ACS Nano, 9(4), 3791-3799, 2015.
59. S. Lei, Z. Shi, J. Ou, F. Wang, M. Xue, W. Li, G. Qiao, X. Guna, and J. Zhang, Durable superhydrophobic cotton fabric for oil/water separation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 533, 249-254, 2017.
60. C. Cao, M. Ge, J. Huang, S. Li, S. Deng, S. Zhang, Z. Chen, K. Zhang, S. S. Al-Deyab, and Y. Lai, Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaningand efficient oil-water separation, Journal of Materials Chemistry A, 4(31), 12179-12187, 2016.
61. J. Ge, D. Zong, Q. Jin, J. Yu, and B. Ding, Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions, Advanced Functional Materials, 28(10), 1705051, 2018.
62. N. H. Ismail, W. N. W. Sallleh, A. F. Ismail, H. Hasbullah, N. Yusof, F. Aziz, and J. Jaafar, Hydrophilic polymer-based membrane for oily wastewater treatment: A review, Separation and Purification Technology, 233, 116007, 2020.
63. X. Bai, Z. Zhao, H. Yang, and J. Li, ZnO nanoparticles coated mesh with switchable wettability for on-demand ultrafast separation of emulsified oil/water mixtures, Separation and Purification Technology, 221, 294-302, 2019.
64. Y. Pan, L. Liu, Z. Zhang, S. Huang, Z. Hao, and X. Zhao, Surfaces with controllable super-wettability and applications for smart oilwater separation, Chemical Engineering Journal, 378, 122178, 2019.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔