(3.238.173.209) 您好!臺灣時間:2021/05/12 12:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:卓育軒
研究生(外文):Yu-SyuanCho
論文名稱:開發三明治結構之TiO2薄膜光電極及其在染料敏化太陽能電池之應用
論文名稱(外文):Development of Sandwich-Structured TiO2 Thin-Film Photoelectrodes for Dye-Sensitized Solar Cells
指導教授:李玉郎
指導教授(外文):Yuh-Lang Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:136
中文關鍵詞:室內環境發電雙面照光鈷錯合物膠態電解質
外文關鍵詞:ambient light recyclingbifacial-light-illuminationcobalt complex redox couplequasi-solid state electrolyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究開發一個新式三明治TiO2薄膜結構,並應用於染料敏化太陽能電池之光電極;此結構是在一般常用的雙層薄膜(吸光層/散射層)後面再增添一層吸光層,形成「吸光層/散射層/吸光層」之三明治結構。相較於常用的雙層薄膜,此三明治結構不只增加來自光電極側的入射光使用率(正照),亦能有效利用由對電極側入射之光子(背照),因而可提升雙面照光型染敏電池之效能。本研究首先對此三明治結構中的TiO2薄膜厚度進行優化,並搭配弱吸光性的鈷錯合物氧化還原對與高穿透度對電極來製備室內型染敏電池。結果發現,在最佳薄膜條件下,染敏電池在螢光燈200 lux環境中的正照與背照光電轉換效率分別達到21.4%及18.8%,其背/正照效率比值為0.88,相對於使用一般雙層薄膜之電池(正照效率為20.5%,背/正照比值0.76),顯示出此三明治結構優異的雙面受光能力。
另一方面,本研究亦將三明治TiO2薄膜結構應用於製備室外型染敏電池,並探討三苯胺衍生物(TPAA)作為電解質添加劑時,對於染敏電池效能之影響。三苯胺衍生物可作為電子施體,增進氧化態敏化劑之還原,故可抑制氧化態敏化劑與光電極電子之間的再結合反應。結果發現,電解質中添加三苯胺衍生物之後,染敏電池於標準太陽光下具有較高的開路電壓,轉換效率由8.04%提升至9.33%,同時背/正照效率比值達0.88。當電解質進一步加入高分子產生膠化後,相關膠態電池不僅有9.02%之轉換效率以及相同之背/正照比值,並在50oC存放1000小時之後仍可獲得極佳的光電轉換表現。
In this study, a novel structured TiO2 thin films is developed and utilized as photoelectodes of dye-sensitized solar cells (DSSCs). This sandwich-structured thin film noted “main layer/scattering layer/main layer” is prepared by adding another main layer behind a normal double-layer thin film (main layer/scattering layer). Compared with the double-layer photoelectodes, the sandwich-structured thin film photoelectodes not only can enhance the light harvest ability of front-side illumination, but also can adsorb light effectively from rear-side illumination. As a results, it improves the cell performances for bifacial-light-illuminated DSSCs. Firstly, the thickness of TiO2 thin film is optimized to get the best performance with a highly transparent counter electrode, and the sandwich-structured TiO2 thin film creates the highest conversion efficiencies of 21.4% and 18.8% under front-side and rear-side fluorescent lighting illumination (T5, 200 lux). Moreover, it gets 0.88 of rear/front-side efficiency ratio and demonstrates a high potential for bifacial-light cell application.
Furthermore, this sandwich-structured thin film DSSCs also applies for outdoor application (1-sun irradiation) and discusses the effect of triphenylamine derivatives as electrolyte additives. Triphenylamine derivatives are used as electron donors to enhance the reduction of oxidized sensitizers and inhibit the charge recombination. Therefore, it creates higher Voc to increase the conversion efficiency from 8.04% to 9.33% with 0.88 of rear/front-side efficiency ratio. The recipe of the electrolyte is also utilized to prepare quasi-solid state electrolyte and the corresponding DSSC shows a good conversion efficiency of 9.02% and same rear/front-side ratio. Moreover, the quasi-solid-state DSSC still maintains 1000% of its initial efficiency after 1500hr at 50℃.
摘要 Ⅰ
Extended abstract Ⅱ
誌謝 XVII
目錄 XX
表目錄 XXIII
圖目錄 XXIV
第1章 緒論 1
1-1前言 1
1-2研究目的與動機 3
第2章 實驗原理與文獻回顧 4
2-1 染料敏化太陽能電池介紹 4
2-1-1 染料敏化太陽能電池之工作原理 5
2-1-2 電子在染料敏化太陽能電池中的傳輸路徑 6
2-2 染料敏化太陽能電池之結構介紹 9
2-2-1 透明導電基板 9
2-2-2 氧化物半導體 11
2-2-3 光敏化劑 13
2-2-3-1 半導體敏化劑 14
2-2-3-2 釕金屬錯合物染料 15
2-2-3-3 紫質染料 18
2-2-3-4 純有機染料 19
2-2-4 電解質 23
2-2-4-1 碘電解質 24
2-2-4-2 鈷電解質 25
2-2-5 對電極 28
2-3 文獻回顧 31
2-3-1 染料敏化太陽能電池於室內光下之研究 31
2-3-2 鈷錯合氧化還原對於室內光環境下應用之可行性 35
2-3-3 雙面照光型染料敏化太陽能電池 36
2-3-4 膠態電解質 38
2-3-5 電子施體(Tris(4-methoxyphenyl)amine, TPAA) 39
2-3-6 染料敏化太陽能模組 40
第3章 實驗部份 43
3-1 實驗藥品與材料 43
3-2 實驗儀器與分析原理 45
3-2-1 高解析場發射掃描式電子顯微鏡 45
3-2-2 太陽光模擬器 47
3-2-3 室內光量測系統 51
3-2-4 入射光子轉換效率測量系統 53
3-2-5 電化學交流阻抗分析儀 55
3-2-6 金屬濺鍍機 61
3-2-7 紫外光-可見光光譜儀 62
3-2-8 一般儀器介紹 64
3-3 實驗流程 66
3-3-1 二氧化鈦薄膜製備 66
3-3-2 光電極敏化流程 67
3-3-3 電解質製備 68
3-3-4 白金對電極製備 69
3-3-5 染料敏化太陽能電池組裝 69
3-3-6 染料敏化太陽能模組元件組裝 70
第4章 結果與討論 73
4-1 室內雙面照光型染敏電池之探討 74
4-1-1 光電極薄膜結構 74
4-1-1-1 一般薄膜結構之優化 76
4-1-1-2 三明治薄膜結構之優化與元件之電化學阻抗分析 80
4-1-1-3 固定吸光層層數為兩層之不同薄膜結構比較 89
4-1-2 膠態電解質 92
4-1-2-1 高分子膠化劑含量之調控 93
4-1-2-2 電解質之電化學特性分析 95
4-1-2-3 元件之穩定性測試 96
4-1-3雙染料共敏化 97
4-1-3-1雙染料比例之調控 98
4-1-3-2共敏元件之電化學阻抗分析 102
4-1-4模組元件 104
4-1-4-1一般元件與模組元件之比較 104
4-1-4-2模組元件之應用 106
4-2 室外雙面照光型染敏電池之探討 107
4-2-1光電極薄膜結構 107
4-2-2電子施體TPAA於電解質之效應 109
4-2-2-1電子施體TPAA濃度之調控 110
4-2-2-2電解質之電化學特性分析 112
4-2-2-3液態元件之電化學阻抗分析 113
4-2-2-4電子施體TPAA 於膠態電解質之效應 115
4-2-2-5膠態元件之電化學阻抗分析 117
4-2-2-6元件之穩定性測試 119
第5章 結論與建議 120
5-1 結論 120
5-2 未來工作與建議 125
第6章 參考文獻 127
[1]H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, Dye Sensitized Zinc Oxide: Aqueous Electrolyte: Platinum Photocell, Nature, 261, 402-403 (1976).
[2]B. O’Regan and M. Grätzel, A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Film, Nature, 353, 737-740 (1991).
[3]M. Grätzel, Photoelectrochemical Cells, Nature, 414, 338-344 (2001).
[4]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dye-Sensitized Solar Cells, Chem. Rev., 110, 6595-6663 (2010).
[5]M. Grätzel, Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells, J. Photochem. Photobiol. A, 164, 3-14 (2004).
[6]B. Wang and L. L. Kerr, Dye Sensitized Solar Cells on Paper Substrates, Sol. Energy Mater Sol. Cells, 95, 2531-2535 (2011).
[7]H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon, and Y. B. Cheng, Low Temperature Chemically Sintered Nano-Crystalline TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells, J. Photochem. Photobiol. A, 213, 30-36 (2010).
[8]Y.-Y. Kuo and C.-H. Chien, Sinter-Free Ttransferring of Anodized TiO2 Nanotube-Array onto a Flexible and Transparent Sheet for Dye-Sensitized Solar Cells, Electrochim. Acta, 91, 337-343 (2013).
[9]S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Péchy, M. K. Nazeeruddin, and M. Grätzel, High-Efficiency (7.2%) Flexible Dye-Sensitized Solar Cells with Ti-Metal Substrate for Nanocrystalline-TiO2 Photoanode, ChemComm, 4004-4006 (2006).
[10]C.-H. Lee, W.-H. Chiu, K.-M. Lee, W.-F. Hsieh, and J.-M. Wu, Improved Performance of Flexible Dye-Sensitized Solar Cells by Introducing an Interfacial Layer on Ti Substrates, J. Mater. Chem., 21, 5114-5119 (2011).
[11]K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, and V. P. S. Perera, An Efficient Dye-Sensitized Photoelectrochemical Solar Cell Made from Oxides of Tin and Zinc, ChemComm, 15-16 (1999).
[12]K. Keis, E. Magnusson, S.-E. Lindquist, and A. Hagfeldt, A 5% Efficient Photoelectrochemical Solar Cell Based on Nanostructured ZnO Electrodes, Sol. Energy Mater Sol. Cells, 73, 51-58 (2002).
[13]H. Rensmo, K. Keis, H. Lindström, S. Sö1dergren, A. Solbrand, A. Hagfeldt, S.-E. Lindquist, L. N. Wang and M. Muhammed, High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes, J. Phys. Chem. B, 101, 2598-2601 (1997).
[14]X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis details and applications, Nano Lett., 8, 3781-3786 (2008).
[15]O. K. Varghese, M. Paulose, and C. A. Grimes, Long Vertically Aligned Titania Nanotubes on Transparent Conducting Oxide for Highly Efficient Solar Cells, Nat. Nanotechnol., 4, 592-597 (2009).
[16]J. T. Jiu, S. Isoda, F. M. Wang, and M. Adachi, Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film, J. Phys. Chem. B, 110, 2087-2092 (2006).
[17]L. Schmidt‐Mende, U. Bach, R. Humphry‐Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, and M. Grätzel, Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells, Adv. Mater., 17, 813-815 (2005).
[18]S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel, Fabrication of Screen‐Printing Pastes from TiO2 Powders for Dye‐Sensitised Solar Cells, Prog Photovolt, 15, 603-612 (2007).
[19]T. Miyasaka and Y. Kijitori, Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers, J. Electrochem. Soc., 151, A1767-A1773 (2004).
[20]W. W. Yu and X. G. Peng, Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers, Angew. Chem. Int. Ed. Engl., 41, 2368-2371 (2002).
[21]A. J. Nozik, Quantum Dot Solar Cells, Physica E Low Dimens. Syst. Nanostruct., 14, 115-120 (2002).
[22]W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells, J. Appl. Phys., 32, 510-519 (1961).
[23]A. Hagfeldt and M. Grätzel, Molecular Photovoltaics, Acc. Chem. Res., 33, 269-277 (2000).
[24]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Grätzel, Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on Nanocrystalline TiO2 Electrodes, J. Am. Chem. Soc., 115, 6382-6390 (1993).
[25]M. K. Nazeeruddin, P. Pechy, and M. Grätzel, Efficient Panchromatic Sensitization of Nanocrystalline TiO2 Films by a Black Dye Based on a Trithiocyanato-Ruthenium Complex, ChemComm, 1705-1706 (1997).
[26]M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells, J. Am. Chem. Soc., 123, 1613-1624 (2001).
[27]M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers, J. Am. Chem. Soc., 127, p. 16835-16847 (2005).
[28]P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, A stable Quasi-Solid-State Dye-Sensitized Solar Cell with an Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte, Nat. Mater., 2, 402-407 (2003).
[29]Y. R. Liu, J. R. Jennings, Y. Huang, Q. Wang, S. M. Zakeeruddin, and M. Grätzel, Cobalt Redox Mediators for Ruthenium-Based Dye-Sensitized Solar Cells: A Combined Impedance Spectroscopy and Near-IR Transmittance Study, J. Phys. Chem. C, 115, 18847-18855 (2011).
[30]C.-T. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J.-D. Decoppet, J.-H, Tsai, C. Grätzel, C.-G. Wu, S. M. Zakeeruddin and M. Grätzel, Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells, ACS Nano, 3, 3103-3109 (2009).
[31]Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, and P. Wang, High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States, ACS Nano, 4, 6032-6038 (2010).
[32]T. Bessho, S. M. Zakeeruddin, C.-Y. Yeh, E. W.-G. Diau, and M. Grätzel, Highly Efficient Mesoscopic Dye‐Sensitized Solar Cells Based on Donor–Acceptor‐Substituted Porphyrins, Angew. Chem. Int. Ed., 122, 6796-6799 (2010).
[33]A. Yella, H.-W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E.-W. G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency, Science, 334, 629-634, (2011).
[34]S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers, Nat. Chem., 6, 242-247 (2014).
[35]S. Ferrere, A. Zaban, and B. A. Gregg, Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives, J. Phys. Chem. B, 101, 4490-4493 (1997).
[36]N. J. Cherepy, G. P. Smestad, M. Grätzel, and J. Z. Zhang, Ultrafast Electron Injection:  Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode, J. Phys. Chem. B, 101, 9342-9351 (1997).
[37]K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, Highly Efficient Photon-to-Electron Conversion of Mercurochrome-sensitized Nanoporous ZnO Solar Cells, Chem. Lett. 29, 316-317 (2000).
[38]A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. an Organized Assembly Approach for Enhancing the Efficiency of Photosensitization, J. Phys. Chem. B, 103, 4693-4700 (1999).
[39]K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, Y. Abe, H. Sugihara, and H. Arakawa, Photosensitization of a Porous TiO2 Electrode with Merocyanine Dyes Containing a Carboxyl Group and a Long Alkyl Chain, ChemComm, 1173-1174 (2000).
[40]K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, A Coumarin-Derivative Dye Sensitized Nanocrystalline TiO2 Solar Cell Having a High Solar-Energy Conversion Efficiency Up to 5.6%, ChemComm, 569-570 (2001).
[41]T. Horiuchi, H. Miura, and S. Uchida, Highly-Efficient Metal-Free Organic Dyes for Dye-Sensitized Solar Cells, ChemComm, 3036-3037 (2003).
[42]S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida and M. Grätzel, High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness, Adv. Mater., 18, 1202-1205 (2006).
[43]S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, and M. Grätzel, High-Conversion-Efficiency Organic Dye-Sensitized Solar Cells with a Novel Indoline Dye, ChemComm, 5194-5196 (2008).
[44]G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, and P. Wang, High Efficiency and Stable Dye-Sensitized Solar Cells with an Organic Chromophore Featuring a Binary π-Conjugated Spacer, ChemComm, 2198-2200 (2009).
[45]W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, and P. Wang, Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks, Chem. Mater., 22, 1915-1925 (2010).
[46]L. Kavan, J.-H. Yum, M. K. Nazeeruddin and M. Grätzel, Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells, ACS Nano, 5, 9171-9178 (2011).
[47]W. Xiang, W. Huang, U. Bach, and L. Spiccia, Stable High Efficiency Dye-Sensitized Solar Cells Based on a Cobalt Polymer Gel Electrolyte, ChemComm, 49, 8997-8999 (2013).
[48]K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, and M. Hanaya, Highly-Efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-Anchor and Carboxy-Anchor Dyes, ChemComm, 51, 15894-15897 (2015).
[49]G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, A Channel Flow Cell System Specifically Designed to Test the Efficiency of Redox Shuttles in Dye Sensitized Solar Cells, Sol. Energy Mater Sol. Cells, 70, 85-101 (2001).
[50]S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1):  The Case of Solar Cells Using the I-/I3- Redox Couple, J. Phys. Chem. B, 109 3480-3487 (2005).
[51]C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Dai, Photoelectrochemical Effects of Guanidinium Thiocyanate on Dye-Sensitized Solar Cell Performance and Stability, J. Phys. Chem. C, 113, 21779-21783 (2009).
[52]T. W. Hamann, The End of Iodide? Cobalt Complex Redox Shuttles in DSSCs, Dalton Trans., 41, 3111-3115 (2012).
[53]Y.-L. Lee, C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu, and C.-F. Chi, A Platinum Counter Electrode with High Electrochemical Activity and High Transparency for Dye-Sensitized Solar Cells, Electrochem commun, 12, 1662-1665 (2010).
[54]C. H. Yoon, R. Vittal, J. Lee, W.-S. Chae and K.-J. Kim, Enhanced Performance of A Dye-Sensitized Solar Cell with An Electrodeposited-Platinum Counter Electrode, Electrochim. Acta, 53, 2890-2896 (2008).
[55]L.-L. Li, C.-W. Chang, H.-H. Wu, J.-W. Shiu, P.-T. Wu, and E. W.-G. Diau, Morphological Control of Platinum Nanostructures for Highly Efficient Dye-Sensitized Solar Cells, J. Mater. Chem., 22, 6267 (2012).
[56]N. Papageorgiou, W. F. Maier, and M. Grätzel, An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media, J. Electrochem. Soc., 144, 876-884 (1997).
[57]E. Olsen, G. Hagen, and S. E. Lindquist, Dissolution of Platinum in Methoxy Propionitrile Containing LiI/I2, Sol. Energy Mater Sol. Cells, 63, 267-273 (2000).
[58]T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, and M. Grätzel, Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes, J. Electrochem. Soc., 153, A2255-A2261 (2006).
[59]K.-C. Huang, Y.-C. Wang, R.-X. Dong, W.-C. Tsai, K.-W. Tsai, C.-C. Wang, Y.-H. Chen, R. Vittal, J.-J. Lin, and K.-C. Ho, A High Performance Dye-Sensitized Solar Cell with a Novel Nanocomposite Film of PtNP/MWCNT on the Counter Electrode, J. Mater. Chem., 20, 4067-4073 (2010).
[60]L. Kavan, J. H. Yum, and M. Grätzel, Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets, Acs Nano, 5, 165-172 (2010).
[61]J. M. Pringle, V. Armel, and D. R. MacFarlane, Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells, Chem. Commun., 46, 5367-5369 (2010).
[62]Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo and X.-Z. Zhao, In Situ Prepared Transparent Polyaniline Electrode and Its Application in Bifacial Dye-Sensitized Solar Cells, ACS Nano, 5, 3795-3799 (2011).
[63]S. Ahmad, T. Bessho, F. Kessler, E. Baranoff, J. Frey, C. Yi, M. Grätzel and M. K. Nazeeruddin, A New Generation of Platinum and Iodine Free Efficient Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys., 14, 10631-10639 (2012).
[64]V. Annapureddy, H. Palaneedi, G.-T. Hwang, M. Peddigari, D.-Y. Jeong, W.-H. Yoon, K.-H. Kim and J. Ryu, Magnetic Energy Harvesting with Magnetoelectrics: An Emerging Technology for Self-Powered Autonomous Systems, Sustain. Energy Fuels, 1, 2039-2052 (2017).
[65]I. Mathews, P. J. King, F. Stafford, and R. Frizzell, Performance of III-V Solar Cells as Indoor Light Energy Harvesters, IEEE J. Photovolt., 6, 230-235 (2016).
[66]P. C. Yang, I. M. Chan, C. H. Lin, and Y. L. Chang, Thin Film Solar Cells for Indoor Use, in IEEE 37th Photovoltaic Specialists Conference (PVSC), 696-698 (2011).
[67]F. D. Rossi, T. Pontecorvo, and T. M. Brown, Characterization of Photovoltaic Devices for Indoor Light Harvesting and Customization of Flexible Dye Solar Cells to Deliver Superior Efficiency under Artificial Lighting, Appl. Energy, 156, 413-422 (2015).
[68]N. Sridhar and D. Freeman, A Study of Dye Sensitized Solar Cells under Indoor and Low Level Outdoor Lighting: Comparison to Organic and Inorganic Thin Film Solar Cells and Methods to Address Maximum Power Point Tracking, in 26th European Photovoltaic Solar Energy Conference and Exhibition, 232-236 (2011).
[69]Y. S. Tingare, N. S. Vinh, H.-H. Chou, Y.-C. Liu, Y.-S. Long, T.-C. Wu, T.-C. Wei, and C.-Y. Yeh, New Acetylene‐Bridged 9,10‐Conjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dye‐Sensitized Solar Cells, Adv. Energy Mater., 7, 1700032 (2017).
[70]M.-C. Tsai, C.-L. Wang, C.-W. Chang, C.-W. Hsu, Y.-H. Hsiao, C.-L. Liu, C.-C. Wang, S.-Y. Lina, and C.-Y. Lin, A Large, Ultra-Black, Efficient and Cost-Effective Dye-Sensitized Solar Module Approaching 12% Overall Efficiency under 1000 Lux Indoor Light, J. Mater. Chem. A, 6, 1995-2003 (2018).
[71]M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J.-E. Moser, M. Grätzel, and A. Hagfeldt, Dye-Sensitized Solar Cells for Efficient Power Generation under Ambient Lighting, Nat. Photonics, 11, 372-378 (2017).
[72]Y. Cao, Y. Liu, S. M. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics, Joule, 2, 1108-1117 (2018).
[73]C.-T. Li, Y.-L. Kuo, CH. P. Kumar, P.-T. Huang and J. T. Lin, Tetraphenylethylene Tethered Phenothiazine-Based Double-Anchored Sensitizers for High Performance Dye-Sensitized Solar Cells, J. Mater. Chem. A, 7, 23225-23233 (2019).
[74]E. Tanaka, H. Michaels, M. Freitag and N. Robertson, Synergy of Co-Sensitizers in a Copper Bipyridyl Redox System for Efficient and Cost-Effective Dye-Sensitized Solar Cells in Solar and Ambient Light, J. Mater. Chem. A, 8, 1279-1287 (2020).
[75]H. Michaels, M. Rinderle, R. Freitag, I. Bensperi, T. Edvinsson, R. Socher, A. Gagliardi and M. Freitag, Dye-Sensitized Solar Cells under Ambient Light Powering Machine Learning: towards Autonomous Smart Sensors for the Internet of Things, Chem. Sci., 11, 2895-2906 (2020).
[76]J. Ferber and J. Luther, Computer Simulations of Light Scattering and Absorption in Dye-Sensitized Solar Cells, Sol. Energy Mater Sol. Cells, 54, 265-275 (1998).
[77]M. N. Mustafa, S. Shafie, M. H. Wahid and Y. Sulaiman, Light Scattering Effect of Polyvinylalcohol/Titanium Dioxide Nanofibers in The Dye-Sensitized Solar Cell, Nature, 9, 14952 (2019).
[78]S. Ito, S. M. Zakeeruddin, P. Comte, P. Liska, D. Kuang, and M. Grätzel, Bifacial Dye-Sensitized Solar Cells Based on an Ionic Liquid Electrolyte, Nat. Photonics, 2, 693-698 (2008).
[79]Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo, and X.-Z. Zhao, In Situ Prepared Transparent Polyaniline Electrode and Its Application in Bifacial Dye-Sensitized Solar Cells, ACS Nano, 5, 3795-3799 (2011).
[80]D.-K. Hwang, J. E. Nam, H. J. Jo, and S.-J. Sung, Quasi-Solid State Electrolyte for Semi-Transparent Bifacial Dye-Sensitized Solar Cell with Over 10% Power Conversion Efficiency, J. Power Sources, 361, 87-95 (2017).
[81]J. S. Kang, J. Kim, J.-Y. Kim, M. J. Lee, J. Kang, Y. J. Son, J. Jeong, S. H. Park, M. J. Ko, and Y.-E. Sung, Highly Efficient Bifacial Dye-Sensitized Solar Cells Employing Polymeric Counter Electrodes, ACS Appl. Mater. Interfaces, 10, 8611-8620 (2018).
[82]Y.-B Tian, Y.-Y. Wang, S.-M. Chen, Z.-G. Gu and J. Zhang, Epitaxial Growth of Highly Transparent Metal−Porphyrin Framework Thin Films for Efficient Bifacial Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, 12, 1078-1083 (2020).
[83]F. Cao, G. Oskam, and P. C. Searson, A solid state, dye sensitized photoelectrochemical cell, J. Phys. Chem., 99, 17071-17073 (1995).
[84]P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Grätzel, High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte, Chem. Commun., 2972-2973 (2002).
[85]M. B. Achari, V. Elumalai, N. Vlachopoulos, M. Safdari, J. J. Gao, J. M. Gardner, and L. Kloo, A Quasi-Liquid Polymer-Based Cobalt Redox Mediator Electrolyte for Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys., 15, 17419-17425 (2013).
[86]D. K. Lee, K.-S. Ahn, S. Thogiti, and J. H. Kim, Mass Transport Effect on the Photovoltaic Performance of Ruthenium-Based Quasi-Solid Dye Sensitized Solar Cells Using Cobalt Based Redox Couples, Dyes Pigm., 117, 83-91 (2015).
[87]E. J. Johansson, L. Yang, E. Gabrielsson, P. W. Lohse, G. Boschloo, L. Sun and A. Hagfeld, Combining a Small Hole-Conductor Molecule for Efficient Dye Regeneration and a Hole-Conducting Polymer in a Solid-State Dye-Sensitized Solar Cell, J. Phys. Chem. C, 116, 18070-18078 (2012).
[88]Y. Hao, W. Yang, L. Zhang, R. Jiang, E. Mijangos, Y. Saygili, L. Hammarström, A. Hagfeldt and G. Boschloo, A Small Electron Donor in Cobalt Complex Electrolyte Significantly Improves Efficiency in Dye-Sensitized Solar Cells, Nat. Commun., 7, 13934 (2016).
[89]Y. Hao, W. Yang, M. Kaelsson, J. Cong, S. Wang, X. Li, B. Xu, J. Hua, L. Kloo,and G. Boschloo, Efficient Dye-Sensitized Solar Cells with Voltages Exceeding 1 V through Exploring Tris(4-alkoxyphenyl)amine Mediators in Combination with the Tris(bipyridine) Cobalt Redox System, ACS Energy Lett., 3, 1929-1937 (2018).
[90]H. Arakawa, T. Yamaguchi, T. Sutou, Y. Koishi, N. Tobe, D. Matsumoto, and T. Nagai, Efficient Dye-Sensitized Solar Cell Sub-Modules, Curr Appl Phys, 10, S157-S160 (2010).
[91]Y. Liu, H. Wang, H. Shen, and W. Chen, The 3-Dimensional Dye-Sensitized Solar Cell and Module Based on All Titanium Substrates, Appl. Energy, 87, 436-441 (2010).
[92]W. J. Lee, E. Ramasamy, and D. Y. Lee, Effect of Electrode Geometry on The Photovoltaic Performance of Dye-sensitized Solar Cells, Sol. Energy Mater Sol. Cells, 93, 1448-1451 (2009).
[93]Y.-D. Zhang, X.-M. Huang, K.-Y. Gao, Y.-Y. Yang, Y.-H. Luo, D.-M. Li and Q.-B. Meng, How to Design Dye-Sensitized Solar Cell Modules, Sol. Energy Mater Sol. Cells, 95, 2564-2569 (2011).
[94]T.-C. Wei, Y.-H. Chang, S.-P. Feng, and H.-H. Chen, A Semi-Experimental Method for Fast Evaluation of The Performance of Grid-Type Dye-Sensitized Solar Module, Int. J. Electrochem. Sci., 8, 9256-9263 (2013).
[95]X. Huang, Y. Shang, H. Sun, D. Li, Y. Luo and Q. Meng, A New Figure of Merit for Qualifying the Fluorine-Doped Tin Oxide Glass Used in Dye-Sensitized Solar Cells, J. Renew. Sustain. Energy, 1, 063107 (2009).
[96]R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F. M. Prtrat, A. Prodi-Schwab, P. Lechner and W. Hoffmann, New Interdigital Design for Large Area Dye Solar Modules Using A Lead‐Free Glass Frit Sealing, Prog Photovolt, 14, 697-709 (2006).
[97]R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, and H. Katayama, Improvement of The Conversion Efficiency of A Monolithic Type Dye-Sensitized Solar Cell Module, in Technical Digest, 21st International Photovoltaic Science and Engineering Conference, 2011, 2C-5O-08.
[98]A. Hauch and A. Georg, Diffusion in The Electrolyte and Charge-Transfer Reaction at The Platinum Electrode in Dye-Sensitized Solar Cells, Electrochim. Acta, 46, 3457-3466 (2001).
[99]M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata and S. Isoda, Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy, J. Phys. Chem. B, 110, 13872-13880 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔