(3.236.118.225) 您好!臺灣時間:2021/05/16 10:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉浩君
研究生(外文):Hao-ChunYeh
論文名稱:台灣鄰近海域湧浪研究
論文名稱(外文):A Study on the Swell at Taiwan Waters
指導教授:董東璟董東璟引用關係
指導教授(外文):Dong-Jiing Doong
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:66
中文關鍵詞:湧浪瘋狗浪風湧浪分離湧浪譜
外文關鍵詞:SwellCoastal Freak WaveWind-Swell Separationswell spectrum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:37
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
湧浪(Swell)又稱為長浪,其能量消散慢因此可以在海上傳遞相當長的距離,而其週期長、動量大的特性則會令湧浪傳遞至海岸邊時有顯著的破壞力,容易造成結構物受損或激起巨大水花(瘋狗浪),危害岸邊活動民眾。本研究針對台灣周遭海域觀測到的湧浪進行分析,發現其在地域與季節上有差異,資料分析顯示,颱風前後均會傳來湧浪,颱風離開後傳來的湧浪,其波高較颱風前傳來者大了約40%,影響時長也為颱風前傳來者的3倍,顯示颱風離開後的湧浪對海岸衝擊更大。湧浪不僅出現在颱風前後,季風期間亦常出現湧浪,東北季風引起的湧浪影響時長甚至會長達100小時以上,影響程度不容忽視。近年來,中央氣象局有針對湧(長)浪提出警戒,本研究發現,在長浪警戒發布期間,瘋狗浪實際發生的比率有29%;而非長浪警戒期間,瘋狗浪發生比率為11%;此外也發現湧浪能量越大其BFI值越高,顯示湧浪傳入到近岸區域會增加波浪非線性程度。在瘋狗浪發生時湧浪波高分析發現,瘋狗浪發生時平均湧浪波高為平常時的1.62倍,顯示湧(長)浪是造成瘋狗浪的重要因素之一,但並非為唯一影響因子。本研究還發現,在非長浪警戒期間,若發生瘋狗浪,其通常為單一出現,而在長浪警戒期間,瘋狗浪在一小時內出現超過一次以上機率占80%以上。最後本研究透過風湧浪分離方法,獲得湧浪頻譜,以JONSWAP波譜模型套配有良好的結果,並分別得到颱風期間與季風期間平均湧浪譜模型參數,可進一步作為工程評估之用。
Swell with the characteristic of low energy dissipation can propagate for a long distance. The characteristics of long period and large momentum will make the swell have significant destructive power when it is transmitted to the coast. It is easy to cause structural damage or provoke huge splashes (coastal freak wave), harming the people on the shore. This study analyzes the swells around Taiwan waters. Data analysis shows that swells are transmitted before and after the typhoon. After the typhoon leaves, the swell height is about 40% greater before the typhoon. The impacted period of the swell is also three times as much as that before the typhoon. The typhoon swell impact on coast during typhoon left is more significant than during typhoon coming. Moreover, swell induced by monsoon was found in this study. The impacted period of monsoon swell is up to 100 hours in specific case. It shows that the influence of swells during the monsoon cannot be ignored, and it had the different characteristics from typhoon swells. For example, the swell wave height and swell peak period during the typhoon are larger than those during the monsoon, and monsoon had the longer impacted period. In recent years, the Central Meteorological Administration has warned against long waves. This study found that during the warning time, the occurred rate of the coastal freak waves(CFW) is 29%. And the rate during the non-warning time is 11%. In addition, it is also found that the Benjamin-Feir Index (BFI) is directly proportional to the swell energy. It shows that the contraction of swells to the nearshore area will increase the wave nonlinearity. The average swell height during CFW occurred is 1.62 times than usual, shows that swells are one of the important factors causing CFWs. Furthermore, CFWs occurred more than once per hour during the warning time. At last, in this study obtain the parameters of the average swell spectrum model during typhoon and monsoon respectively. The parameters can be used for engineering assessment in the future.
摘要 I
Abstract II
致謝 VII
目錄 IX
圖目錄 XI
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 前人研究 3
1-3 研究目的 5
1-4 本文架構 6
第二章 分析資料與方法 7
2-1 實測資料與品管 7
2-1-1 現場測站與資料數 7
2-1-2 資料品管 9
2-2 風湧浪分離 10
2-2-1 理論基礎 10
2-2-2 驗證 12
2-3 波譜模型 14

第三章 台灣周遭海域湧浪特性 16
3-1 颱風前後之湧浪 16
3-1-1 全年平均湧浪統計 16
3-1-2 颱風湧浪分析對象 19
3-1-3 颱風湧浪統計 21
3-2 季風環境下的湧浪 24
3-2-1 季風資料篩選 24
3-2-2 季風湧浪統計 28
3-2-3 季風湧浪與颱風湧浪之差異 32
3-3 風湧浪共存交錯海況 34
3-4 湧浪譜 38
3-4-1 颱風湧浪譜 38
3-4-2 季風湧浪譜 41
3-4-3 湧浪譜參數結果 43
第四章 湧浪與瘋狗浪的關係 44
4-1 瘋狗浪發生時之湧浪特性統計 44
4-2 瘋狗浪與長浪警戒之關係 48
4-3 瘋狗浪發生時之BFI分析 52
4-4 湧浪對溯上型瘋狗浪之影響 56
第五章 結論與建議 60
5-1 結論 60
5-2 建議 62
參考文獻 63
[1]中央氣象局,「災害性瞬變海象之研究」,研究計畫報告,2015
[2]中央氣象局,「異常海象機率預警研究與作業試用(4/4)」,研究計畫報告,2019
[3]李堉辰,「從方向波譜分離風湧浪之研究—有限吹風延時法」,成功大學水利及海洋工程學系學位論文,2017
[4]梁乃匡,「颱風波浪波譜的估計」,港灣技術第一期,1-6,1985
[5]曾相茂、陳佳興,「100年臺灣地區國際港附近海域海氣象現場調查分析研究(3/4)」,交通部運輸研究所,2012
[6]陳冠宇,「波群特性及其在瘋狗浪之應用研究」,港灣技術研究中心,2002
[7]陳盈智、董東璟、蔡政翰、蔡仁智、藤春慈、朱啟豪,「以實測資料探討颱風湧浪對異常波浪發生之影響」,第37屆海洋工程研討會,89-93,2015
[8]Amurol, S., Ewans, K. (2019). The effect of swell on wave spectra of extreme sea states offshore Sarawak, Malaysia. Ocean Engineering, 189, 106288.
[9]Benjamin, T. B.and Feir, J. E. (1967). The disintegration of wave trains on deep water Part 1. Theory. Journal of Fluid Mechanics, 27(3), 417-430.
[10]Besley, P., Stewart, T., Allsop, N. W. H. (1998). Overtopping of vertical structures: new prediction methods to account for shallow water conditions. In Proc. Conf. Coastlines, Structures and Breakwaters, Institution of Civil Engineers, Thomas Telford, London, 45-57.
[11]Doong, D. J., Chen, S. H., Kao, C. C., Lee, B. C., Yeh, S. P. (2007). Data quality check procedures of an operational coastal ocean monitoring network. Ocean Engineering, 34(2), 234-246.
[12]Doong, D. J., Peng, J. P., Chen, Y. C. (2018). Development of a warning model for coastal freak wave occurrences using an artificial neural network. Ocean Engineering, 169, 270-280.
[13]Earle, M. D. (1984). Development of algorithms for separation of sea and swell. National Data Buoy Centre Tech. Rep. MEC-87-1, 53
[14]Gramstad, O., Trulsen, K. (2010). Can swell increase the number of freak waves in a wind sea ?. Journal of Fluid Mechanics, 650, 57-79.
[15]Goda, Y. (1970). A synthesis of breaker indices. In Proceedings of the Japan Society of Civil Engineers. Japan Society of Civil Engineers, 180, 39-49.
[16]Goda, Y. (2010). Random seas and design of maritime structures. World scientific.
[17]Hanson, J. L., Phillips, O. M. (2001). Automated analysis of ocean surface directional wave spectra. Journal of atmospheric and oceanic technology, 18(2), 277-293.
[18]Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Meerburg, A. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft 8-12.
[19]Hu, K., Chen, Q. (2011). Directional spectra of hurricane‐generated waves in the Gulf of Mexico. Geophysical research letters, 38(19).
[20]Hwang, P. A., Ocampo-Torres, F. J., García-Nava, H. (2012). Wind sea and swell separation of 1D wave spectrum by a spectrum integration method. Journal of Atmospheric and Oceanic Technology, 29(1), 116-128.
[21]Janssen, P. A. (2003). Nonlinear four-wave interactions and freak waves. Journal of Physical Oceanography, 33(4), 863-884.
[22]Liang, N. K. (2012). The Freak Wave Potential of Typhoon Swell. Journal of Marine Science and Technology, 20(4), 467-471.
[23]Lucas, C., Soares, C. G. (2015). On the modelling of swell spectra. Ocean Engineering, 108, 749-759.
[24]Mackay, E. (2016). A unified model for unimodal and bimodal ocean wave spectra. International Journal of Marine Energy, 15, 17-40.
[25]Mori, N., Janssen, P. A. (2006). On kurtosis and occurrence probability of freak waves. Journal of Physical Oceanography, 36(7), 1471-1483.
[26]Onorato, M., Osborne, A. R., Serio, M. (2006). Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves. Physical review letters, 96(1), 014503.
[27]Onorato, M., Proment, D., Toffoli, A. (2010). Freak waves in crossing seas. The European Physical Journal Special Topics, 185(1), 45-55.
[28]Pierson Jr, W. J., Moskowitz, L. (1964). A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii. Journal of geophysical research, 69(24), 5181-5190.
[29]Portilla, J., Ocampo-Torres, F. J., Monbaliu, J. (2009). Spectral partitioning and identification of wind sea and swell. Journal of atmospheric and oceanic technology, 26(1), 107-122.
[30]Semedo, A., Sušelj, K., Rutgersson, A., Sterl, A. (2011). A global view on the wind sea and swell climate and variability from ERA-40. Journal of Climate, 24(5), 1461-1479.
[31]Semedo, A., Vettor, R., Breivik, Ø., Sterl, A., Reistad, M., Soares, C. G., Lima, D. (2015). The wind sea and swell waves climate in the Nordic seas. Ocean Dynamics, 65(2), 223-240.
[32]Serio, M., Onorato, M., Osborne, A. R., Janssen, P. A. (2005). On the computation of the Benjamin-Feir Index. Il nuovo cimento C, 28(6), 893-903.
[33]Slunyaev, A., Sergeeva, A., Pelinovsky, E. (2015). Wave amplification in the framework of forced nonlinear Schrödinger equation: the rogue wave context. Physica D: Nonlinear Phenomena, 303, 18-27.
[34]Snodgrass, F. E., Hasselmann, K. F., Miller, G. R., Munk, W. H., Powers, W. H. (1966). Propagation of ocean swell across the Pacific. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 259(1103), 431-497.
[35]Soares, C. G. (1984). Representation of double-peaked sea wave spectra. Ocean Engineering, 11(2), 185-207.
[36]Sverdrup, H. U.and Munk, W. H. (1947). Wind, sea and swell: Theory of relations for forecasting (No. 303). Hydrographic Office.
[37]Tsai, C. H., Su, M. Y., Huang, S. J. (2004). Observations and conditions for occurrence of dangerous coastal waves. Ocean engineering, 31(5-6), 745-760.
[38]Torsethaugen, K. (1993). A two peak wave spectrum model.
[39]Tzang, S. Y., Hsiao, S. S. (1999). A case study on typhoon-induced consecutive damages on coastal structures at Keelung Coast. In Coastal Structures . 1017-1025.
[40]Toffoli, A., Bitner‐Gregersen, E. M., Osborne, A. R., Serio, M., Monbaliu, J., Onorato, M. (2011). Extreme waves in random crossing seas: Laboratory experiments and numerical simulations. Geophysical Research Letters, 38(6).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文