(3.210.184.142) 您好!臺灣時間:2021/05/12 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李威霖
研究生(外文):Wei-LinLee
論文名稱:入滲過程中孔隙水壓變化及其對邊坡穩定影響之研究
論文名稱(外文):Research on Pore Water Pressure Changes during Infiltration and Its Impact on Slope Stability
指導教授:謝正倫謝正倫引用關係戴義欽
指導教授(外文):Chjeng-Lun ShiehYih-Chin Tai
學位類別:博士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:212
中文關鍵詞:崩塌入滲崩塌預警固液氣耦合理論
外文關鍵詞:LandslideInfiltrationWarning systemHydro-mechanical response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的主要目的在於研究山坡地雨水入滲過程中孔隙水壓隨時間的變化特性及其影響因素,並將研究結果應用於大規模崩塌監測預警的改進上。本研究採用理論、實驗及數值模擬三種方法,對於入滲過程中的孔隙水壓、孔隙氣壓及顆粒有効應力進行分析。
在理論研究方面:本文以固液氣三相耦合理論為基礎,於土體不變形和土體變形等假設下,解析入滲過程中三相的應力變化。之後,本文更進一步於一維鉛直入滲條件下孔隙水壓和孔隙氣壓變化特性的關係式,以及濕鋒接觸地下水面和底部不透水時孔隙水壓上升速度的關係式,並可得知濕鋒接觸不透水面和地下水面時,孔隙水壓的上升速度與入滲速度、濕鋒飽和度和排氣速度有關。此外,本文得到一維鉛直入滲下無限邊坡條件的邊坡穩定分析方法,將應用來探討入滲過程中孔隙水壓變化對邊坡穩定性的影響。
在實驗研究方面:配合理論研究土體不變形的假設,將雨水入滲設計成一維鉛直入滲及二維斜面入滲並將土體材料組成分為單層及分層兩種,同時亦考慮入滲過程中土體內空氣的排放方式而設計排氣閥門加以控制。其中,從一維鉛直入滲實驗得知,孔隙水壓上升現象發生於入滲濕鋒接觸土體分層之界面、底部之不透水面及地下水面等,當排氣條件速度快時,飽和入滲之濕鋒接觸上述界面時孔隙水壓驟升,反之,當排氣條件速度慢時,未飽和入滲之濕鋒接觸上述界面時其孔隙水壓上升速度較飽和入滲條件下為慢。針對上述濕鋒接觸上述界面並造成界面處孔隙水壓上升的現象,本文將其稱之為滲流水錘,其孔隙水壓上升速度的快慢,本文將其視為滲流水錘強度。另外,從二維斜面入滲實驗發現,當入滲濕鋒抵達地下水面時,形成地下水丘現象(Aish and Smedt 2004; Bansal and Das 2010),地下水丘底部的孔隙水壓上升速度和上升量均遠大於其他位置,此種現象對邊坡穩定產生很大影響。
在數值模擬研究方面:本研究利用三種不同模式分别在土體不變形及變形的條件下,對於入滲過程中固液氣三相的應力及應變進行模擬,並將其與理論及實驗結果進行比較。其中,以土體不變形條件下模擬一維鉛直入滲過程,當坡面積水時,坡面生成孔隙水壓,因此導致鄰近坡面顆粒有效應力下降;當濕鋒所經之處的飽和度上升,吸力因此而消失,並導致顆粒有效應力下降;當濕鋒接觸土體分層之界面、不透水面和地下水面等時孔隙水壓上升,顆粒有效應力因此而下降。另外,於模擬二維斜面入滲過程,當地下水丘現象發生時,地下水丘底部孔隙水壓快速上升,但其他位置的孔隙水壓上升較慢,此種空間上不均勻的孔隙水壓分布,係為有限邊坡情境下的地下水位變化,土體的有效應力和抗剪強度也因此於空間上產生不均勻下降,因此本文知地下水丘現象發生時會產生不平行坡面的應變區域。
綜合上述研究結果,本文提出下列數點作為結論 :
1. 當降雨強度大於入滲率時,於邊坡表面形成積水,並於接近表面處生成孔隙水壓,為淺層崩塌發生提供必要條件(非充分條件)。
2. 於入滲過程中,濕鋒所經之處的飽和度上升,並導致土層吸力下降甚至消失,並對坡面的穩定性造成影響。
3. 當入滲濕鋒接觸土體分層之界面、不透水面和地下水面等界面時,孔隙水壓於界面處生成,並對整個邊坡土體的穩定性造成影響。
4. 當入滲濕鋒接觸界面時,於排氣速度快的土層條件下,例如地層構造破裂帶、邊坡裂隙、高度風化坡面等,界面處產生孔隙水壓驟升現象,對邊坡穩定性造成的影響最嚴重。
5. 於有限邊坡條件下,入滲接觸地下水面時將發生地下水丘現象,地下水丘底部孔隙水壓上升速度和上升量均遠大於其他位置,若孔隙水壓上升量足以造成土體變形,則會產生不平行坡面的應變區域。
最後,將研究成果應用於大規模崩塌的監測預警方法的改進上。由於,傳統地滑監測方法中是以地下水位之監測為主(王文能 2016),並未監測入滲之過程。由上述本研究結論之第四點顯示,飽和入滲的濕鋒接觸到地下水面時會產生孔隙水壓驟升之現象,所以必須對入滲濕鋒和地下水位進行監測,特別是飽和入滲濕鋒下降速度和地下水位上升速度,並以上述兩個速度來預測濕鋒接觸地下水面的時間,然後將此時間做為崩塌預警的指標及警戒值。
The main purpose of this paper is to study the change characteristics of pore water pressure with time during the period of rainfall infiltration on a slope, and its impacts on the other factors about slope stability. The methodology of this paper is involved with theoretical research, experimental research, and numerical research.

In theoretical research, a coupled three-phase theory was used to describe the interac-tion between pore water, pore air, and soil. Accordingly, the study pointed out that a suddenly increasing pore water pressure appears when the wetting front touching the surface of groundwater or impermeable surface and it is an important phenomenon. Under the conditions of one-dimensional vertical infiltration, an analytical solution was proposed to estimate the rising speed of the phenomenon. In experimental research, the one-dimensional vertical infiltration experiment was implemented to investigate the phenomenon. The comparison of the experimental result and the analytical solution sound agreement. The phenomenon wass named Seepage hammer in this study and the rising speed of pore water pressure defined as the intensity of seepage hammer. In numerical research, the numerical model was used to investigate the influence of seep-age hammer on the slope stability and illustrated that seepage hammer can cause a slope to unstable suddenly.

In conclusion, this study pointed out that the seepage hammer is an important phenom-enon to trigger the landslide. This study provided a conceptual method for a warning system and emphases the importance of the observation of the wetting front.
摘要 I
Abstract III
目錄 IX
圖目錄 XII
表目錄 XVII
符號 XVIII
第一章、緒論 1
1.1 背景與動機 1
1.2 研究目的 2
1.3 論文架構 3
第二章、文獻回顧 4
2.1 崩塌相關文獻回顧 4
2.1.1 崩塌發生現象與理論 6
2.1.1.1 崩塌發生相關現象回顧 6
2.1.1.2 崩塌發生相關理論回顧 10
2.1.2 崩塌運動現象與理論 18
2.1.2.1 崩塌運動相關現象回顧 18
2.1.2.2 崩塌運動相關理論回顧 20
2.1.3 小結 25
2.2 入滲相關文獻回顧 27
2.2.1 入滲相關現象回顧 27
2.2.2 入滲相關理論回顧 39
2.2.3 小結 51
2.3 崩塌與入滲數值模擬相關文獻回顧 54
2.3.1 數值模擬基本方程組回顧 55
2.3.1.1 崩塌發生階段數值模擬基本方程組回顧 55
2.3.1.2 崩塌運動階段數值模擬基本方程組回顧 61
2.3.1.3 崩塌發生與運動階段整合數值模擬基本方程組回顧 64
2.3.2 數值模擬離散方法回顧 66
2.3.3 小結 69
2.4 崩塌預警相關文獻回顧 74
第三章、研究方法 80
3.1 研究流程與架構 80
3.2 理論研究 83
3.2.1 本研究之崩塌與入滲現象定義 83
3.2.2基本方程式推導 84
3.2.2.1. 固液汽三相耦合理論 86
3.2.2.2. 土體不變形條件下液氣耦合理論 90
3.2.2.3. 土體變形條件下液固耦合理論 93
3.2.3 基本方程式解析 98
3.2.4 小結 103
3.3 實驗研究 108
3.3.1 實驗設計 108
3.3.1.1 單層一維鉛直入滲實驗設計 108
3.3.1.2 分層一維鉛直入滲實驗設計 111
3.3.1.3 單層二維斜面入滲實驗設計 113
3.3.2 實驗結果與討論 115
3.3.2.1 單層一維鉛直入滲條件下底部不透水面孔隙水壓之變化 115
3.3.2.2 分層一維鉛直入滲條件下底部不透水面孔隙水壓之變化 118
3.3.2.3 單層二維斜面入滲條件下底部不透水面孔隙水壓之變化 124
3.3.3 理論解析解與實驗結果之比較 126
3.3.4 小結 131
3.4 數值研究 134
3.4.1 模式介紹 135
3.4.1.1 GeoStudio 135
3.4.1.2 PLAXIS 137
3.4.1.3 Anura 138
3.4.2 模擬條件設計與模式選用 140
3.4.2.1 單層一維鉛直入滲實驗模擬條件設計 140
3.4.2.2 分層一維鉛直入滲實驗模擬條件設計 145
3.4.2.3 單層二維斜面入滲實驗模擬條件設計 148
3.4.2.4 Anura與PLAXIS數值實驗比較模擬條件設計 150
3.4.3 模式率定與驗證 152
3.4.3.1 與單層一維鉛直入滲實驗結果的比較 152
3.4.3.2 與分層一維鉛直入滲實驗結果的比較 157
3.4.3.3 與單層二維斜面入滲實驗結果的比較 159
3.4.3.4 Anura與PLAXIS數值實驗的比較結果 161
3.4.4 模擬結果與討論 163
3.4.4.1 單層一維鉛直入滲模擬結果與討論 163
3.4.4.2 分層一維鉛直入滲模擬結果與討論 168
3.4.4.3 單層二維斜面入滲模擬結果與討論 170
3.4.5 小結 174
第四章、應用研究 177
4.1 一維鉛直入滲現象對邊坡穩定的影響 177
4.2 滲流水錘現象引致崩塌的預警評估 182
4.3 Anura於崩塌發生與運動現象整合的應用 185
4.3.1 研究區域選定:香港翡翠路崩塌事件 185
4.3.2 模擬條件設計 187
4.3.3 模擬結果與討論 189
第五章、結論與建議 193
5.1 結論 193
5.2 建議 196
參考文獻 197
附錄A:動量和連續方程式推導 A-1
附錄B:材料質點法及其解算流程 B-1
1.Aish, A., & De Smedt, F. “Modeling of a groundwater mound resulting from artificial recharge in the Gaza Strip, Palestine. In Proceedings of the 2nd Israeli–Palestinian International Conference on Water for Life in the Middle East, Antalya, Turkey, Vol. 10, p. 14, 2004.
2.Alonso E.E. & Zabala F. “Progressive failure of Aznalcóllar dam using the material point method. Géotechnique, 61(9), pp.795–808, 2011.
3.Alvioli, M., & Baum, R. L. “Parallelization of the TRIGRS model for rain-fall-induced landslides using the message passing interface. Environmental Model-ling & Software, 81, 122-135, 2016.
4.Anderson, T. B., & Jackson, R. “Fluid mechanical description of fluidized beds. Equations of motion. Industrial & Engineering Chemistry Fundamentals, 6(4), 527-539, 1967.
5.Baum, R. L., Savage, W. Z., & Godt, J. W. “TRIGRS—a Fortran program for transi-ent rainfall infiltration and grid-based regional slope-stability analysis. US geologi-cal survey open-file report, 424, 38, 2002.
6.Bansal, R. K., & Das, S. K. “Analytical study of water table fluctuation in uncon-fined aquifers due to varying bed slopes and spatial location of the recharge basin. Journal of Hydrologic Engineering, 15(11), 909-917, 2010.
7.Bandara S., & Soga K. “Coupling of soil deformation and pore fluid flow using ma-terial point method. Computers and Geotechnics 63, 199-214, 2015.
8.Bandara, S., Ferrari, A., & Laloui, L. “Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method. International Journal for Numerical and Analytical Methods in Geomechanics, 40(9), 1358-1380, 2016.
9.Biot, M. A. “Le problem de la consolidation des matieres argileuses sous une charge. Annaies de la Societe Scientifique de Bruxelles, 110-113, 1935.
10.Biot, M. A. “General theory of three‐dimensional consolidation. Journal of applied physics, 12(2), 155-164, 1941.
11.Biot, M. A. “Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher frequency range. The Journal of the acoustical Society of america, 28(2), 179-191, 1956.

12.Bishop, A. W. “The use of pore-pressure coefficients in practice. Geotechnique, 4(4), 148-152, 1954.
13.Bishop, A. W. “The use of the slip circle in the stability analysis of slopes. Geotech-nique, 5(1), 7-17, 1955.
14.Bishop, A. W. “The principle of effective stress. Technical Weekly Magazine 39: 859-863, 1959.
15.Brinkgreve, R.B.J. “PLAXIS, Finite Element Code for Soil and Rock Analysis, 2D-Version. Balkema, Rotterdam, 2002.
16.Bobet, A., Fakhimi, A., Johnson, S., Morris, J., Tonon, F., & Yeung, M. R. “Numerical models in discontinuous media: review of advances for rock mechanics applications. Journal of Geotechnical and Geoenvironmental Engineering, 135(11), 1547-1561, 2009.
17.Brooks, R. H., & Corey, A. T. “Hydraulic properties of porous media, hydrology pa-pers, no. 3, colorado state university, ft. Collins, Colo, 1964.
18.Buckingham, E. “Studies on the movement of soil moisture. 1907.
19.Cannon, S. H. “An empirical model for the volume-change behavior of debris flows. In Proceedings of Hydraulic Engineering ’93, Vol. 2 , ed. H. W. Shen , S. T. Su and F. Wen . New York : American Society of Civil Engineers , pp. 1768–1773, 1993.
20.Cao, J., Jung, J., Song, X., & Bate, B. “On the soil water characteristic curves of poorly graded granular materials in aqueous polymer solutions. Acta Geotechnica 13(1): 103-116, 2018.
21.Cascini, L., Cuomo, S., Pastor, M., & Sorbino, G. “Modeling of rainfall-induced shallow landslides of the flow-type. Journal of Geotechnical and Geoenvironmental Engineering 136(1): 85-98, 2009.
22.Cascini, L., Cuomo, S., Pastor, M., & Sorbino, G. “Modeling of rainfall-induced shallow landslides of the flow-type. Journal of Geotechnical and Geoenvironmental Engineering, 136(1), 85-98, 2010.
23.Cascini, L., Cuomo, S., Pastor, M., & Sacco, C. “Modelling the post-failure stage of rainfall-induced landslides of the flow type. Canadian Geotechnical Journal, 50(9), 924-934, 2013.
24.Chae, B. G., Choi, J., & Seo, Y. S. “Suggestion of a landslide early warning method using a gradient of volumetric water content. In Landslide Science for a Safer Ge-oenvironment, Springer, Cham, pp. 545-550, 2014.
25.Chae, B. G., Park, H. J., Catani, F., Simoni, A., & Berti, M. “Landslide prediction, monitoring and early warning: a concise review of state-of-the-art. Geosciences Journal, 21(6), 1033-1070, 2017.
26.Chandrasekaran, S. S., Owaise, R. S., Ashwin, S., Jain, R. M., Prasanth, S., & Venu-gopalan, R. B. “Investigation on infrastructural damages by rainfall-induced land-slides during November 2009 in Nilgiris, India. Natural hazards, 65(3), 1535-1557, 2013.
27.Chang, K. J., Taboada, A., & Chan, Y. C. “Geological and morphological study of the Jiufengershan landslide triggered by the Chi-Chi Taiwan earthquake. Geomorphol-ogy, 71(3-4), 293-309, 2005.
28.Chang, K. T., & Huang, H. C. “Three-dimensional analysis of a deep-seated landslide in central Taiwan. Environmental earth sciences, 74(2), 1379-1390, 2015.
29.Christen, M., Bartelt, P., Kowalski, J., & Stoffel, L. “Calculation of dense snow ava-lanches in three-dimensional terrain with the numerical simulation program RAMMS. In Proceedings Whistler 2008 International Snow Science Workshop September 21-27, p. 709, 2008.
30.Chung, M. C., Tan, C. H., & Chen, C. H. “Local rainfall thresholds for forecasting landslide occurrence: Taipingshan landslide triggered by Typhoon Saola. Landslides, 14(1), 19-33, 2017.
31.Corominas, J. “The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 33(2), 260-271, 1996.
32.Cruden, D. M., & Varnes, D. J. “Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation research board special report, 247, 1996.
33.Cueto-Felgueroso, L., & Juanes, R. “Nonlocal interface dynamics and pattern for-mation in gravity-driven unsaturated flow through porous media. Physical Review Letters, 101(24), 244504, 2008.
34.Culmann, C. “Die graphische statik (Vol. 1). Meyer & Zeller. in German, 1875.
35.Cundall, P. A. “A computer model for simulating progressive, large-scale movement in blocky rock system. In Proceedings of the International Symposium on Rock Mechanics, 1971.
36.Cundall, P. A., & Strack, O. D. “A discrete numerical model for granular assemblies. geotechnique, 29(1), 47-65, 1979.
37.Darcy, H. P. G. “Les Fontaines publiques de la ville de Dijon. Exposition et applica-tion des principes à suivre et des formules à employer dans les questions de distribu-tion d'eau, etc. V. Dalamont, 1856.
38.De Boer, R. “Development of porous media theories—a brief historical review. Transport in porous media, 9(1-2), 155-164, 1992.
39.De Boer, R. “Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory. 1996.
40.Dietrich, W. E., & Montgomery, D. R. “SHALSTAB: a digital terrain model for mapping shallow landslide potential. University of California, 1998.
41.Dixon, R. M., & Linden, D. R. “Soil air pressure and water infiltration under border irrigation. Soil Science Society of America Journal, 36(6), 948-953, 1972.
42.Domaas, U. “Geometrical methods of calculating rockfall range. Norwegian Ge-otechnical Institute, Report, 585910(1), 1994.
43.Domenico, P. A., & Schwartz, F. W. “Physical and chemical hydrogeology. Vol. 506, New York: Wiley, 1998.
44.Duncan, J. M., and Wright, S. G. “Soil Strength and Slope Stability, John Wiley, Hoboken, N. J, pp. 297, 2005.
45.Dupuit, J. É. J. “Études théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables [Theoritical and practical studies on water flow in open channels and through permeable terrans]. 2nd ed., Dunod, Paris, 1863.
46.Ehlers, W. “On thermodynamics of elasto-plastic porous media. Arch. Mech, 41(1), 73-93, 1989.
47.Ehlers, W. “Toward finite theories of liquid-saturated elasto-plastic porous media. International journal of plasticity, 7(5), 433-475, 1991.
48.Ehlers, W. “Compressible, incompressible and hybrid two-phase models in porous theories. ASME; AMD, 158, 25-38, 1993.
49.Ehlers, W. “Foundations of multiphasic and porous materials. In Porous media, Springer, Berlin, Heidelberg, pp. 3-86, 2002.
50.Evans, S. G., & Hungr, O. “The assessment of rockfall hazard at the base of talus slopes. Canadian geotechnical journal, 30(4), 620-636, 1993.
51.Fannin, R. J., & Wise, M. P. “An empirical-statistical model for debris l ow travel distance. Canadian Geotechnical Journal , 38 , 982 –994, 2001.
52.Fellenius, W. “Erdstatische Berechnungen. revised edition. W. Ernst u. Sons, Berlin. in German, 1927.
53.Formetta, G., Rago, V., Capparelli, G., Rigon, R., Muto, F., & Versace, P. “Integrated physically based system for modeling landslide susceptibility. Procedia Earth and Planetary Science, 9, 74-82, 2014.
54.Fredlund, D. G., & Rahardjo, H. “Soil mechanics for unsaturated soils. John Wiley & Sons, 1993.
55.Fredlund, D. G. “Unsaturated soil mechanics in engineering practice. Journal of ge-otechnical and geoenvironmental engineering, 132(3), 286-321, 2006.
56.Galavi, V. “Groundwater flow, fully coupled flow deformation and undrained anal-yses in PLAXIS 2D and 3D. Plaxis Report. 2010.
57.Gan, J. K., & Fredlund, D. G. “Shear strength characteristics of two saprolitic soils. Canadian Geotechnical Journal, 33(4), 595-609, 1996.
58.Gardner, W. R. “Some steady-state solutions of the unsaturated moisture flow equa-tion with application to evaporation from a water table. Soil science, 85(4), 228-232, 1958.
59.GEO-SLOPE International, Ltd. “Air flow modeling with AIR/W. Calgary GEO-SLOPE International, Ltd, 2014.
60.Gian, Q. A., Tran, D. T., Nguyen, D. C., Nhu, V. H., & Tien Bui, D. “Design and im-plementation of site-specific rainfall-induced landslide early warning and monitoring system: a case study at Nam Dan landslide (Vietnam). Geomatics, Natural Hazards and Risk, 8(2), 1978-1996, 2017.
61.Goetz, R. O. “Investigation into using air in the permeability testing of granular soils. Technical report The University of Michigan Ann Arbor MI USA, 1971.
62.Goodman, R. E., & Shi, G. “Block Theory and Its Application to Rock Engineering. Englewood Cliffs, NJ : Prentice Hall, 1985.
63.Gray, W. G. “General conservation equations for multi-phase systems: 4. Constitutive theory including phase change. Advances in water resources, 6(3), 130-140, 1983.
64.Green, W. H., & Ampt, G. A. “Studies on Soil Phyics. The Journal of Agricultural Science, 4(1), 1-24, 1911.
65.Gray, W. G. “General conservation equations for multi-phase systems: 4. Constitutive theory including phase change. Advances in water resources, 6(3), 130-140, 1983.

66.Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. “Rainfall thresholds for the ini-tiation of landslides in central and southern Europe. Meteorology and atmospheric physics, 98(3-4), 239-267, 2007.
67.Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. “The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides, 5(1), 3-17, 2008.
68.Hamad, F. “Formulation of a dynamic material point method and applications to soil-water-geotextile systems. Universität Stuttgart Inst. f. Geotechnik, 2014.
69.Hassanizadeh, M., & Gray, W. G. “General conservation equations for multi-phase systems: 1. Averaging procedure. Advances in water resources, 2, 131-144, 1979.
70.Heim , A. “Bergsturz und Menschenleben (Landslides and Human Lives). Translated by N. Skermer. Vancouver : Bitech Press, 1932.
71.Hermanns, R., & Longva, O. “Rapid rock-slope failures. In J. Clague & D. Stead (Eds.), Landslides: Types, Mechanisms and Modeling, Cambridge: Cambridge Uni-versity Press, pp. 59-70, 2012.
72.Ho, I. H. “Three-dimensional finite element analysis for soil slopes stabilisation us-ing piles. Geomechanics and Geoengineering, 12(4), 234-249, 2017.
73.Hoek, E., & Brown, E. T. “Empirical strength criterion for rock masses. Journal of Geotechnical and Geoenvironmental Engineering, 106, 1980.
74.Horton, R. E. “Analysis of runoff‐plat experiments with varying infiltration‐capacity. Eos Transactions American Geophysical Union 20(4): 693-711, 1939.
75.Horton, R. E. “An approach toward a physical interpretation of infiltration-capacity. Soil Sci-ence Society of America Journal, 5(C), 399-417, 1941.
76.Hungr, O. “A model for the runout analysis of rapid flow slides, debris flows, and av-alanches. Canadian Geotechnical Journal, 32(4), 610-623, 1995.
77.Hungr, O. “Flow slides and flows in granular soils. Proc., Int. Workshop “Flows 2003—Occurrence and Mechanisms of Flows in Natural Slopes and Earthfill, L. Picarelli, ed., Patron, Bologna, 2004.
78.Hungr, O., Corominas, J., & Eberhardt, E. “Estimating landslide motion mechanism, travel distance and velocity. In Landslide risk management, pp. 109-138, 2005.
79.Hunter, G., & Fell, R. “Travel distance angle for rapid landslides in constructed and natural soil slopes. Canadian Geotechnical Journal, 40(6), 1123-1141, 2003.

80.Hussin, H. Y., Ciurean, R., Frigerio, S., Marcato, G., Calligaris, C., Reichenbach, P., .Westen, C. V., & Glade, T. “Assessing the effect of mitigation measures on land-slide hazard using 2D numerical runout modelling. In Landslide science for a safer geoenvironment, Springer, Cham, pp. 679-684, 2014.
81.Hutchinson, J. N. “A sliding–consolidation model for flow slides. Canadian Ge-otechnical Journal, 23(2), 115-126, 1986.
82.Itasca. “ FLAC 7.0, FLAC3D V4, UDEC 5.0, 3DEC 4.0, PFC 4.0, PFC3D 4.0. Min-neapolis, MN : Itasca Consulting Group Inc . [available at www.itascacg.com/ ], 2011.
83.Iverson, R. M. “The physics of debris flows. Reviews of geophysics, 35(3), 245-296, 1997.
84.Iverson, R. M. “Landslide triggering by rain infiltration. Water resources research, 36(7), 1897-1910, 2000.
85.Jabbari, H., Zeng, Z., & Ostadhassan, M. “Impact of in-situ stress change on fracture conductivity in naturally fractured reservoirs: Bakken case study. In 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011.
86.Janbu, N. “Application of composite slip surface for stability analysis. In Proceed-ings of European Conference on Stability of Earth Slopes, Sweden, Vol. 3, pp. 43-49, 1954.
87.Jassim, I., Stolle, D., & Vermeer, P. “Two‐phase dynamic analysis by material point method. International journal for numerical and analytical methods in geomechan-ics, 37(15), 2502-2522, 2013.
88.Jennings, J. E. B., & Burland, J. B. “Limitations to the use of effective stresses in unsaturated soils. Geotechnique, 12, 125-144, 1962.
89.Jiao, J. J., Wang, X. S., & Nandy, S. “Confined groundwater zone and slope instabil-ity in weathered igneous rocks in Hong Kong. Engineering Geology, 80(1-2), 71-92, 2005.
90.Khalili, N., Geiser, F., & Blight, G. E. “Effective stress in unsaturated soils: Review with new evidence. International journal of Geomechanics, 4(2), 115-126, 2004.
91.Knill, S. J. “Report on the Fei Tsui road landslide of 13 August 1995. Government Printer, South Africa, 1996.
92.Körner, H. J. “Reichweite und Geschwindigkeit von Bergstürzen und Fließschneelawinen. Rock mechanics, 8(4), 225-256, 1976.

93.Kuang, X., Jiao, J. J., & Li, H. “Review on airflow in unsaturated zones induced by natural forcings. Water Re-sources Research 49(10): 6137-6165, 2013.
94.Kuo, C. Y., Tai, Y. C., Chen, C. C., Chang, K. J., Siau, A. Y., Dong, J. J., Han, R. H., Shimamoto, T., & Lee, C. T. “The landslide stage of the Hsiaolin catastrophe: simu-lation and validation. Journal of Geophysical Research: Earth Surface, 116(F4), 2011.
95.Kuo, Y. S., Tsai, Y. J., Chen, Y. S., Shieh, C. L., Miyamoto, K., & Itoh, T. “Movement of deep-seated rainfall-induced landslide at Hsiaolin Village during Typhoon Mora-kot. Landslides, 10(2), 191-202, 2013.
96.Lee, W. L., Tai, Y. C., Shieh, C. L., Miyamoto, K., & Lin, Y. F. “Hydro-mechanical response with respect to the air ventilation for water filtration in homogeneous soil. Journal of Mountain Science, 16(11), 2562-2576, 2019.
97.Leroueil , S. , Locat , J. , Vaunat , J. , Picarelli , L., & Faure , R. “Geotechnical char-acterization of slope movements. In Proceedings of the International Symposium on Landslides: 1 .Rotterdam : Balkema , pp. 53 –74, 1996.
98.Leroueil, S. “Natural slopes and cuts: movement and failure mechanisms. Geotech-nique, 51(3), 197–243, 2001.
99.Li, T. “A mathematical model for predicting the extent of a major rockfall. Zeitschrift für Geomorphologie Stuttgart, 27(4), 473-482, 1983.
100.Li, T. B., Wang, X., Xue, D. M., & Ma, C. C. “Modelling study on rainfall infiltration and drainage effect of Badu landslide. In Landslides and Engineered Slopes. Expe-rience, Theory and Practice pp. 1275-1280, 2018.
101.Lin, C. W., Tseng, C. M., Tseng, Y. H., Fei, L. Y., Hsieh, Y. C., & Tarolli, P. “Recog-nition of large scale deep-seated landslides in forest areas of Taiwan using high reso-lution topography. Journal of Asian Earth Sciences, 62, 389-400, 2013.
102.Lo, W. C., Sposito, G., & Majer, E. “Wave propagation through elastic porous media containing two immiscible fluids. Water Resources Research, 41(2), 2005.
103.Lo, C. M., Lin, M. L., Tang, C. L., & Hu, J. C. “A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit. Engineering Geolo-gy, 123(1-2), 22-39, 2011.
104.Lu, N., & Likos, W. J. “Unsaturated soil mechanics. Wiley, 2004.
105.Lu, N., & Likos, W. J. “Rate of capillary rise in soil. Journal of geotechnical and Geoenvironmental engineering, 130(6), 646-650, 2004.

106.Lu, N., & Likos, W. J. “Suction stress characteristic curve for unsaturated soil. Journal of geotechnical and geoenvironmental engineering, 132(2), 131-142, 2006.
107.Lu, N. “Is matric suction a stress variable?. Journal of Geotechnical and Geoenvi-ronmental Engineering, 134(7), 899-905, 2008.
108.Lu, N., & Godt, J. W. “Hillslope hydrology and stability. Cambridge University Press, 2013.
109.McDougall, S. “A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. Doctoral dissertation, University of British Columbia, 2006.
110.McDougall, S., McKinnon, M., & Hungr, O. “Developments in landslide runout pre-diction. In J. Clague & D. Stead (Eds.), Landslides: Types, Mechanisms and Mod-eling, Cambridge: Cambridge University Press, pp. 187-195, 2012.
111.Mein, R. G., & Larson, C. L. “Modeling infiltration during a steady rain. Water re-sources research, 9(2), 384-394, 1973.
112.Mitchell, J. K., & Soga, K. “ Fundamentals of soil behavior (Vol. 3). New York: John Wiley & Sons, 2005.
113.Miyamoto, K. “Two dimensional numerical simulation of landslide mass movement. Journal of Erosion Control Engineering, 55(2), 5-13, 2002.
114.Miyamoto, K., & Imaizumi, F.A theoretical explanation of triggering condition of deep-seated landslide. In Proceedings of 3rd International Workshop on Multimodal Sediment Disasters, A-5, pp. 1-8, 2012.
115.Montrasio, L., & Valentino, R. “A model for triggering mechanisms of shallow land-slides. Nat Hazards Earth Syst Sci, 8(5), 1149-1159, 2008.
116.Morel-Seytoux, H. J. “Two-phase flows in porous media. Advances in hydroscience, 9(1), 19-202, 1973.
117.Morgenstern, N. U., & Price, V. E. “The analysis of the stability of general slip sur-faces. Geotechnique, 15(1), 79-93, 1965.
118.Mualem, Y. “A new model for predicting the hydraulic conductivity of unsaturated porous media. Water re-sources research 12(3): 513-522, 1976.
119.Muskat, M. “The flow of homogeneous fluids through porous media. Soil Science, 46(2), 169, 1938.


120.Ng, C. W., & Leung, E. H. “Determination of shear-wave velocities and shear moduli of completely decomposed tuff. Journal of geotechnical and geoenvironmental en-gineering, 133(6), 630-640, 2007.
121.Ng, C. W. W., Wong, H. N., Tse, Y. M., Pappin, J. W., Sun, H. W., Millis, S. W., & Leung, A. K. “A field study of stress-dependent soil-water characteristic curves and permeability of a saprolitic slope in Hong Kong. Géotechnique, 61(6), 511, 2011.
122.Nguyen, L. C., Van Tien, P., & Do, T. N. “Deep-seated rainfall-induced landslides on a new expressway: a case study in Vietnam. Landslides, 17(2), 395-407, 2020.
123.Nicoletti, P. G., & Sorriso-Valvo, M. “Geomorphic controls of the shape and mobility of rock avalanches. Geological Society of America Bulletin, 103(10), 1365-1373, 1991.
124.O'Brien, J. S. “FLO-2D user’s manual. Version 2006.01, FLO-2D Software, Inc., Nutrioso, 2006.
125.Pack, R. T., Tarboton, D. G., Goodwin, C. N., & Prasad, A. “SINMAP, a stability in-dex approach to terrain stability hazard mapping. SINMAP user’s manual, Terratech Consulting Ltd, 1998.
126.Peng, S. H., & Lu, S. C. “FLO-2D simulation of mudflow caused by large landslide due to extremely heavy rainfall in southeastern Taiwan during Typhoon Morakot. Journal of Mountain Science, 10(2), 207-218, 2013.
127.Philip, J. R. “Stability analysis of infiltration. Soil Science Society of America Journal, 39(6), 1042-1049, 1975.
128.PLAXIS bv. “Company profile. https://www.plaxis.com/company/about-plaxis/company-profile/, 2020.
129.Pulat, H. F. “An experimental and analytical study of various soil slopes in laboratory conditions. Master's thesis, Izmir Institute of Technology, 2009.
130.Rai, S. N. “Modeling groundwater flow in unconfined aquifers. In Modelling and Simulation of Diffusive Processes, Springer, Cham, pp. 187-210, 2014.
131.Rai, S. N., & Singh, R. N. “On the prediction of groundwater mound formation due to transient recharge from a rectangular area. Water resources management, 10(3), 189-198, 1996.
132.Reid, M. E., Christian, S. B., Brien, D. L., & Henderson, S. “Scoops3D–Software to Analyze Three-Dimensional Slope Stability Throughout a Digital Landscape. US Geological Survey Techniques and Methods, book, 14, 2015.
133.Richards, L. A. “Capillary conduction of liquids through porous mediums. Physics, 1(5), 318-333, 1931.
134.Saggu, R., & Chakraborty, T. “Thermal analysis of energy piles in sand. Geome-chanics and Geoengineering 10(1): 10-29, 2015.
135.Santamarina, J. C. “Soil behavior at the microscale: particle forces. In Soil behavior and soft ground construction, pp. 25-56, 2003.
136.Sassa, K. “Geotechnical model for the motion of landslides (Special lecture). In Proc. 5th Inter. Symp. On landslide, Vol. 1, pp. 37-56, 1989.
137.Savage, S. B. & Hutter, K.The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics , 199 , 177 –215, 1989.
138.Scheidegger, A. E. “On the prediction of the reach and velocity of catastrophic land-slides. Rock mechanics, 5(4), 231-236, 1973.
139.Schmertmann, J. H. “Estimating slope stability reduction due to rain infiltration mounding. Journal of geotechnical and geoenvironmental engineering, 132(9), 1219-1228, 2006.
140.Schroder, J. F. “Landslide of Utah, Utah Geological and Mineralogical Survey. Bul-letin 90, 1-51, 1971.
141.Schroth, M. H., Ahearn, S. J., Selker, J. S., & Istok, J. D. “Characterization of Mil-ler-similar silica sands for laboratory hydrologic studies. Soil Science Society of America Journal 60(5): 1331-1339, 1996.
142.Selby, M. J. “Hillslope materials and processes. Hillslope materials and processes, 1982.
143.Shi, G. H. “Discontinuous deformation analysis—A new numerical model for the statics and dynamics of block systems. Ph.D. thesis. Univ. of California, Berkeley, Calif, 1988.
144.Shi, G. H. “Discontinuous deformation analysis: a new numerical model for the stat-ics and dynamics of deformable block structures. Engineering computations. 9, 157–168, 1992.
145.Shrestha, P. L., Shaller, P. J., Doroudian, M. A. C. A. N., Sykora, D. W., & Hamilton, D. L. “The 2005 La Conchita landslide, California: part 2–modeling. In Proceedings of international conference on debris-flow hazards mitigation: mechanics, prediction, and assessment, pp. 751-758, 2011.
146.Siemens, G. A., Take, W. A., & Peters, S. B. “Physical and numerical modeling of infiltration including consideration of the pore-air phase. Canadian Geotechnical Journal 51(12): 1475-1487, 2014.
147.Siemens, G. A. “Thirty-ninth Canadian geotechnical colloquium: unsaturated soil mechanics—bridging the gap between research and practice. Canadian Geotech-nical Journal 55(7): 909-927, 2017.
148.Simulia. “Abaqus V 6.11. Providence , RI: Simulia [available at www.simulia.com ], 2011.
149.Spencer, E. “A method of analysis of the stability of embankments assuming parallel inter-slice forces. Geotechnique, 17(1), 11-26, 1967.
150.Stead , D., Coggan , J. S., Elmo , D., & Yan, M. “Modelling brittle fracture in rock slopes: Experience gained and lessons learned. In International Symposium on Rock Slope Stability in Open Pit and Civil Engineering , ed. Y. Potvin . Australian Centre for Geomechanics , pp. 239–252, 2007.
151.Stead, D., & Coggan, J. “Numerical modeling of rock-slope instability. In J. Clague & D. Stead (Eds.), Landslides: Types, Mechanisms and Modeling, Cambridge: Cam-bridge University Press, pp. 144-158, 2012.
152.Sulsky, D., Chen, Z., & Schreyer, H. L. “A particle method for history-dependent materials. Computer methods in applied mechanics and engineering, 118(1-2), 179-196, 1994.
153.Sulsky, D., Zhou, S. J., & Schreyer, H. L. “Application of a particle-in-cell method to solid mechanics. Computer physics communications, 87(1-2), 236-252, 1995.
154.Sulsky, D., Schreyer, H., Peterson, K., Kwok, R., & Coon, M. “Using the materi-al-point method to model sea ice dynamics. Journal of Geophysical Research: Oceans, 112(C2), 2007.
155.Sweijen, T., Aslannejad, H., & Hassanizadeh, S. M. “Capillary pressure–saturation relationships for porous granu-lar materials: pore morphology method vs pore unit assembly method. Advances in Water Resources 107: 22-31, 2017.
156.Tai, Y. C., Heß, J., & Wang, Y. “Modeling Two‐Phase Debris Flows With Grain‐Fluid Separation Over Rugged Topography: Application to the 2009 Hsiaolin Event, Tai-wan. Journal of Geophysical Research: Earth Surface, 124(2), 305-333, 2019.
157.Takahashi, T., & Tsujimoto, H.Numerical simulation of flooding and deposition of a debris flow. Annuals, DPRI, 27B-2, 467-485, 1984.
158.Take, W. A., Bolton, M. D., Wong, P. C. P., & Yeung, F. J. “Evaluation of landslide triggering mechanisms in model fill slopes. Landslides 1(3): 173-184, 2004.
159.Terzaghi, K. “The shearing resistance of saturated soils. In Proc. 1st. Int. Conf. Soil Mech. Found. Eng., Cambridge, Mass, Vol. 1, pp. 54-56, 1936.
160.Terzaghi, K. “Theoretical Soil Mechanics. JohnWiley & Sons. New York, 11-15, 1943.
161.Touma, J., & Vauclin, M. “Experimental and numerical analysis of two-phase infil-tration in a partially saturated soil. Transport in Porous Media, 1(1), 27-55, 1986.
162.Tsou, C. Y., Feng, Z. Y., & Chigira, M. “Catastrophic landslide induced by typhoon Morakot, Shiaolin, Taiwan. Geomorphology, 127(3-4), 166-178, 2011.
163.Vachaud, G., Vauclin, M., Khanji, D., & Wakil, M. “Effects of air pressure on water flow in an unsaturated stratified vertical column of sand. Water Resources Research, 9(1), 160-173, 1973.
164.Van Genuchten, M. T. “A closed-form equation for predicting the hydraulic conduc-tivity of unsaturated soils 1. Soil science society of America journal, 44(5), 892-898, 1980.
165.Varnes, D. J. “Landslide types and processes. Landslides and engineering practice, 24, 20-47, 1985.
166.Varnes, D. J. “Slope movement types and processes. Special report, 176, 11-33, 1978.
167.Vereecken, H., Weihermüller, L., Assouline, S., Šimůnek, J., Verhoef, A., Herbst, M., Archer, N., Mohanty, B., Montzka, C., Vanderborght, J., Balsamo, G., Bechtold, M., Boone, A., Chadburn, S., Cuntz, M., Decharme, B., Ducharne, A., Ek, M., Garrigues, S., Goergen, K., Ingwersen, J., Kollet, S., Lawrence, D. M., Li, Q., Or, D., Swenson, S., Vrese, P. D., Walko, R., Wu, Y., & Xue, Y. “Infiltration from the Pedon to Global Grid Scales An Overview and Outlook for Land Surface Modeling. Vadose Zone Journal, 18(1), 2019.
168.Vermeer, P. A., & De Borst, R. “Non-associated plasticity for soils, concrete and rock. HERON, 29 (3), 1984.
169.Wang, Y. H., & Yan, W. M. “Laboratory studies of two common saprolitic soils in Hong Kong. Journal of geotechnical and geoenvironmental engineering, 132(7), 923-930, 2006.
170.Wang, Z., Feyen, J., Nielsen, D. R., & van Genuchten, M. T. “Two‐phase flow infil-tration equations accounting for air entrapment effects. Water Resources Research, 33(12), 2759-2767, 1997.
171.Wang, Z., Feyen, J., & Ritsema, C. J. “Susceptibility and predictability of conditions for preferential flow. Water Resources Research, 34(9), 2169-2182, 1998.
172.Wang, F., & Sassa, K. “A modified geotechnical simulation model for the areal pre-diction of landslide motion. In Proceedings of the First European Conference on Landslides, pp. 735-740, 2000.
173.Wang, B., Vardon, P. J., & Hicks, M. A.Preliminary analysis of rainfall-induced slope failures using the material point method. In Landslides and Engineered Slopes, Experience, Theory and Practice, Proceedings of the 12th International Symposium on Landslides, Naples, Italy, pp. 2037-2042, 2016.
174.Warren, J. E., & Root, P. J. “The behavior of naturally fractured reservoirs. Society of Petroleum Engineers Journal, 3(03), 245-255, 1963.
175.Weeks, E. P. “The Lisse effect revisited. Groundwater, 40(6), 652-656, 2002.
176.Whitaker, S. “The transport equations for multi-phase systems. Chemical Engineer-ing Science,28(1), 139-147, 1973.
177.Weir, G. J., & Kissling, W. M. “The influence of airflow on the vertical infiltration of water into soil. Water resources research, 28(10), 2765-2772, 1992.
178.Wieckowski Z., Youn S.-K. & Yeon J.-H. “A particle -in-cell solution to the silo dis-charging problem. International Journal for Numerical Methods in Engineering 45 1203–1225, 1999.
179.Wieckowski Z. “Modelling of silo discharge and filling problems by the material point method. Task Quarterly 4: 701–721, 2003.
180.Wieczorek, G. F. “Landslides: investigation and mitigation. Chapter 4-Landslide triggering mechanisms. Transportation Research Board Special Report, 247, 1996.
181.Wu, J. H., Chen, J. H., & Lu, C. W. “Investigation of the Hsien-du-Shan rock ava-lanche caused by typhoon Morakot in 2009 at Kaohsiung county, Taiwan. Interna-tional Journal of Rock Mechanics and Mining Sciences, 60, 148-159, 2013.
182.Wyckoff, R. D., & Botset, H. G. “The flow of gas‐liquid mixtures through unconsol-idated sands. Physics 7(9): 325-345, 1936.


183.Yang, K. H., Uzuoka, R., Lin, G. L., & Nakai, Y. “Coupled hydro-mechanical analy-sis of two unstable unsaturated slopes subject to rainfall infiltration. Engineering Geology, 216, 13-30, 2017.
184.Yerro, C. A. “MPM modelling of landslides in brittle and unsaturated soils. Doctoral dissertation, Universitat Politècnica de Catalunya (UPC), 2015.
185.Zhang, X. D., Chen, J. P., Huang, R. Q., Yan, M., & Ding, H. J. “A study of defor-mation features of gapa landslide using FLAC-3D. Rock and Soil Mechanics, 1, 131-135, 2005.
186.Zhang, X., Chen, Z., & Liu, Y. “The material point method: a continuum-based par-ticle method for extreme loading cases. Academic Press, 2016.
187.Zhang, Y., Underschultz, J., Langhi, L., Mallants, D., & Strand, J. “Numerical mod-elling of coal seam depressurization during coal seam gas production and its effect on the geomechanical stability of faults and coal beds. International Journal of Coal Geology, 195, 1-13, 2018.
188.Zlotnik, V. A., Kacimov, A., & Al‐Maktoumi, A. “Estimating Groundwater Mounding in Slop-ing Aquifers for Managed Aquifer Recharge. Groundwater, 55(6), 797-810, 2017.
189.木村隆俊, & 横山昇. “監視と予測. 日本地すべり学会誌: 地すべり. Journal of the Japan Landslide Society: landslides, 43(4), 233-237, 2006.
190.王文能. “崩塌的地質特性與防災. 中華防災學會出版委員會, pp. 260, 2016.
191.行政院農業委員會水土保持局. “大規模崩塌防減災技術發展與應用. 財團法人成大研究發展基金會, pp. 697, 2015.
192.李錫堤, 董家鈞, & 林銘郎. “小林村災變之地質背景探討. 地工技術,122 , 87-94, 2009.
193.吳哲銘. “滲流水錘現象於二維砂箱試驗之研究. 國立成功大學水利及海洋工程學系碩士論文, 台南市, 2016.
194.松村和樹, 中筋章人, & 井上公夫. “土砂災害調査マニュアル. 鹿島出版会, 1988.
195.林郁峰. “多相流理論應用於鉛直滲流過程之解析. 國立成功大學水利及海洋工程學系碩士論文, 台南市, 2015.

196.紀宗吉, 林朝宗, & 劉桓吉. “林肯大郡地層滑動災變原因之探討. 地工技術, (68), 67-74, 1998.
197.張光宗, 賴丞昶, & 林德貴. “集集地震誘發紅菜坪地滑分析. Journal of Chinese Soil and Water Conservation, 39(3), 329-344, 2008.
198.陳堯中, 廖洪鈞, 林宏達, & 陳志南. “汐止林肯大郡災變原因探討. 地工技術, (68), 29-40, 1998.
199.飯田智之. “技術者に必要な斜面崩壊の知識. 鹿島出版会, 2012.
200.楊樹榮, 林忠志, 鄭錦桐, 潘國樑, 蔡如君,& 李正利. “臺灣常用山崩分類系統. The 14th Conference on Current Researches in Geotechnical Engineering in Taiwan, 2011.
201.賴匯霖. “鉛直分層材料對滲流水錘效應之影響. 國立成功大學水利及海洋工程學系碩士論文, 台南市, 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔