(3.239.33.139) 您好!臺灣時間:2021/03/05 18:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳天枝
研究生(外文):Tien-ChihChen
論文名稱:姬蝴蝶蘭細菌人工染色體基因庫之建構與應用
論文名稱(外文):Construction and application of two bacterial artificial chromosome (BAC) libraries of Phalaenopsis equestris
指導教授:吳文鑾張松彬張松彬引用關係
指導教授(外文):Wen-Luan WuSong-Bin Chang
學位類別:博士
校院名稱:國立成功大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:103
中文關鍵詞:細菌人工染色體基因庫
外文關鍵詞:bacterial artificial chromosomeBAC library
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蝴蝶蘭是世界上最有價值的觀賞植物之一,其新品種的開發對全球的花卉產業具有重要的經濟意義。台灣原生種的姬蝴蝶蘭(Phalaenopsis equestris),具有顏色變化大和花期長等迷人特性,因此常作為商業育種的重要親本,進行其遺傳和基因組研究將有助於促進新品種的開發和產出。具有效益之大片段插入DNA的細菌人工(人造細菌)染色體(bacterial artificial chromosome, BAC)基因庫,對於蝴蝶蘭的基因實質定位(physical mapping)、基因選殖、和分析基因結構與功能至關重要。
本研究以BamHI和HindIII限制酶酵素建構二套姬蝴蝶蘭BAC基因庫,共134,348個BAC選殖株,平均插入片段大小為103kb,大約覆蓋蝴蝶蘭單套基因組12倍。以12個專一性基因探針進行選殖測試,證實所有在蝴蝶蘭基因組中均勻分佈的基因探針,皆可在此基因庫中錨定獲得BAC選殖株。此外,以阿拉伯芥基因AtERS1(ethylene response sensor 1)和AtSOC1(SUPPRESSOR OF OVEREXPRESSION OF CO1)相關的蝴蝶蘭cDNA探針,從這兩套BAC基因庫,篩選出在姬蝴蝶蘭的乙烯受器基因PeERS1和調節開花時間的MADS-box基因PeSOC1 對應的BAC選殖株,經過次選殖並解序,得到此二基因的基因序列全長及構造。PeERS1包含5個外顯子(exon)和4個內含子(intron),而PeSOC1包含7個外顯子和6個內含子,其中PeERS1和PeSOC1的第一內含子(intron 1)分別長達18,413 bp和37,171 bp,其長度遠超過已發表的ERS和SOC1。目前雖然姬蝴蝶蘭全基因組已被解序,但由於缺乏完整的蝴蝶蘭序列文獻,仍然有許多片段支架(scaffold)無法被組裝,於姬蝴蝶蘭基因組中仍存有7%,佔86 Mb的未知序列尚待釐清。在蘭花基因資料庫中的PeSOC1-1基因之第一內含子,存在五段未知序列,總長度為 4,351 bp,可由BAC基因庫選殖出的 PeSOC1,解序後的基因組序列比對而成功修正為4,669 bp。本研究結果表明這兩套姬蝴蝶蘭BAC基因庫是有用的資源,可應用於基因選殖,發展分子標誌,修正與完成次世代定序(next-generation sequencing, NGS)序列中高度複雜的未知序列。
Phalaenopsis orchid is one of the most valuable ornamentals in the world, and the development of new cultivars is economically vital to floricultural industries worldwide. P. equestris, one of the native species orchid in Taiwan, which has many attractive traits such as colorful, long-lasting flowers and is one of the important parents commonly used in commercial breeding programs. The genetics and genome researches on orchids will aid in the development of new cultivars to improve production. The availability of a large-insert bacterial artificial chromosome (BAC) genomic library is crucial for physical mapping, gene cloning, and analysis of gene structure and function in Phalaenopsis orchids.
In this study, two BAC libraries of the P. equestris were constructed using the BamHI and HindIII restriction enzymes. In total, the two libraries contain 134,348 clones with an average insert size of 103 kb and represent approximately 12 x haploid genome equivalents. Twelve gene-specific probes were used to screen the orchid BAC libraries. Positive clones were identified for all 12 probes, that are anchored to probes evenly distributed on the genomes of Phalaenopsis orchids. Moreover, the utility of both libraries was evaluated by screening for the presence of genes encoding ethylene receptor ERS1, and MADS-box that regulation of flowering time in orchids (PeSOC1) related to the Arabidopsis gene, AtERS1and AtSOC1, respectively. Subcloning and sequencing of BACs revealed that these BAC clones contain the corresponding genomic regions of PeERS1 and PeSOC1. The genomic sequence of the PeERS1 consists of 5 exons and 4 introns, the PeSOC1 comprises 7 exons and 6 introns, having the first intron of 18,413 bp and 37,171 bp, respectively, longer than those of ERS and SOC1 had ever been published. Although the whole-genome sequence of the P. equestris has been established, due to the lack of reference of Phalaenopsis orchid sequences, many scaffolds cannot be assembled. There are 86 Mb of the unknown bases corresponding to 7% of the Phalaenopsis genome. Five unknown fragments, a total of 4,351 bp in intron1 of PeSOC1 that is present in the OrchidBase, was successfully amended to 4,669 bp using PeSOC1 genomic sequences derived from BAC clones. These results indicated that the two BAC libraries are useful genomic resources for gene cloning, molecular marker development, and contribution to complete the unknown bases from the NGS (next-generation sequencing) sequences in P. equestris.
Table of contents
摘要 i
Abstract ii
致謝 iii
Table of contents iv
Table of tables vii
Table of figures viii
Abbreviation ix
1. Introduction 1
1.1 Development and prospect of Bacterial artificial chromosome (BAC) library 1
1.2 Application of BAC library 2
1.2.1 Construction of physical maps of whole genome 2
1.2.2 Map-based gene cloning 4
1.2.3. Combine BAC library and FISH technology in cytology and genomics study 4
1.2.4. Study of microsatellite sequence 5
1.3 The reason for constructing the Phalaenopsis BAC library 6
1.3.1 Phalaenopsis orchid is an important plant for Taiwan's export flower 6
1.3.2 The researches of Phalaenopsis orchids 7
1.3.3 Construction and application of BAC libraries 7
1.4. The impact of next-generation sequencing on genomics 8
1.4.1 Most commonly used high-throughput sequencing platforms 8
1.4.2 Overview of orchid genome sequencing 12
2. Materials and Methods 14
2.1 Plant material 14
2.2 High-molecular-weight DNA Preparation 14
2.3 Construction and characterization of BAC library 15
2.4 Preparation of specific probes 17
2.5 BAC library screening 18
2.6 Cloning of cDNAs coding for ethylene receptor (ERS1) or SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) 19
2.7 Real-time RT-PCR analysis of transcripts of PeERS genes 19
2.8 Sequence and Phylogenetic analysis 20
3. Results 22
3.1 Construction of two BAC library of Phalaenopsis equestris 22
3.1.1 Construction of two BAC library 22
3.1.2 Insert size estimation 22
3.1.3 Characterization of the BAC library 23
3.2 Application of BAC libraries of Phalaenopsis equestris 25
3.2.1 Isolation and screening of PeSOC1 from Phalaenopsis equestris and two BAC libraries 25
3.2.2 Isolation and screening of PeERS1 from Phalaenopsis equestris and two BAC libraries 30
3.2.3 Comparison of DNA sequences of PeSOC1 from BAC library and different versions of the OrchidBase data. 33
3.2.4 Application of the two BAC libraries of P. equestris for genomic analysis 36
4. Discussion 39
4.1 BAC library construction and characterization 39
4.1.1 High quality with large amounts of large-insert DNA is a critica factor in the successful construction of BAC library 39
4.1.2 The two BAC libraries are suitable for gene isolation and screening 41
4.2 Application of BAC libraries of Phalaenopsis equestris 42
4.2.1 cloning and characterization of PeSOC1 from P. equestris BAC library 42
4.2.2 BAC library as a tool for correct an fill the draft genome of P. equestris 44
References 48

Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, Wain J, O'Grady J (2015) MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 33: 296-300
Baig MN, Yu A, Guo W, Deng X (2009) Construction and characterization of two Citrus BAC libraries and identification of clones containing the phytoene synthase gene. Genome 52: 484-489
Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2: e106 https://doi.org/10.1371/journal.pgen.0020106
Bent E, Johnson S, Bancroft I (1998) BAC representation of two low‐copy regions of the genome of Arabidopsis thaliana. The Plant Journal 13: 849-855
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatovo IM, Reed MT, Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A, Schroth GP, Smith ME, Smith VP, Spiridou A, Torrance PE, Tzonev SS, Vermaas EH, Walter K, Wu X, Zhang L, Alam MD, Anastasi C, Aniebo IC, Bailey DM, Bancarz IR, Banerjee S, Barbour SG, Baybayan PA, Benoit VA, Benson KF, Bevis C, Black PJ, Boodhun A, Brennan JS, Bridgham JA, Brown RC, Brown AA, Buermann DH, Bundu AA, Burrows JC, Carter NP, Castillo N, Chiara ECM, Chang S, Neil Cooley R, Crake NR, Dada OO, Diakoumakos KD, Dominguez-Fernandez B, Earnshaw DJ, Egbujor UC, Elmore DW, Etchin SS, Ewan MR, Fedurco M, Fraser LJ, Fuentes Fajardo KV, Scott Furey W, George D, Gietzen KJ, Goddard CP, Golda GS, Granieri PA, Green DE, Gustafson DL, Hansen NF, Harnish K, Haudenschild CD, Heyer NI, Hims MM, Ho JT, Horgan AM, Hoschler K, Hurwitz S, Ivanov DV, Johnson MQ, James T, Huw Jones TA, Kang GD, Kerelska TH, Kersey AD, Khrebtukova I, Kindwall AP, Kingsbury Z, Kokko-Gonzales PI, Kumar A, Laurent MA, Lawley CT, Lee SE, Lee X, Liao AK, Loch JA, Lok M, Luo S, Mammen RM, Martin JW, McCauley PG, McNitt P, Mehta P, Moon KW, Mullens JW, Newington T, Ning Z, Ling Ng B, Novo SM, O'Neill MJ, Osborne MA, Osnowski A, Ostadan O, Paraschos LL, Pickering L, Pike AC, Pike AC, Chris Pinkard D, Pliskin DP, Podhasky J, Quijano VJ, Raczy C, Rae VH, Rawlings SR, Chiva Rodriguez A, Roe PM, Rogers J, Rogert Bacigalupo MC, Romanov N, Romieu A, Roth RK, Rourke NJ, Ruediger ST, Rusman E, Sanches-Kuiper RM, Schenker MR, Seoane JM, Shaw RJ, Shiver MK, Short SW, Sizto NL, Sluis JP, Smith MA, Ernest Sohna Sohna J, Spence EJ, Stevens K, Sutton N, Szajkowski L, Tregidgo CL, Turcatti G, Vandevondele S, Verhovsky Y, Virk SM, Wakelin S, Walcott GC, Wang J, Worsley GJ, Yan J, Yau L, Zuerlein M, Rogers J, Mullikin JC, Hurles ME, McCooke NJ, West JS, Oaks FL, Lundberg PL, Klenerman D, Durbin R, Smith AJ (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456: 53-59
Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391: 485-488
Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24: 591-599
Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, Chen LJ, He Y, Xu Q, Bian C, Zheng Z, Sun F, Liu W, Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Dievart A, Dufayard JF, Xu X, Wang JY, Wang J, Xiao XJ, Zhao XM, Du R, Zhang GQ, Wang M, Su YY, Xie GC, Liu GH, Li LQ, Huang LQ, Luo YB, Chen HH, Van de Peer Y, Liu ZJ (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47: 65-72
Cai WW, Reneker J, Chow CW, Vaishnav M, Bradley A (1998) An anchored framework BAC map of mouse chromosome 11 assembled using multiplex oligonucleotide hybridization. Genomics 54: 387-397
Carneiro MO, Russ C, Ross MG, Gabriel SB, Nusbaum C, DePristo MA (2012) Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics 13: 375 doi:10.1186/1471-2164-13-375
Chaisson MJ, Huddleston J, Dennis MY, Sudmant PH, Malig M, Hormozdiari F, Antonacci F, Surti U, Sandstrom R, Boitano M, Landolin JM, Stamatoyannopoulos JA, Hunkapiller MW, Korlach J, Eichler EE (2015) Resolving the complexity of the human genome using single-molecule sequencing. Nature 517: 608-611
Chalhoub B, Belcram H, Caboche M (2004) Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size. Plant Biotechnol J 2: 181-188
Chao YT, Chen WC, Chen CY, Ho HY, Yeh CH, Kuo YT, Su CL, Yen SH, Hsueh HY, Yeh JH, Hsu HL, Tsai YH, Kuo TY, Chang SB, Chen KY, Shih MC (2018) Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnol J 16: 2027-2041
Chauhan R, Farman M, Zhang H-B, Leong S (2002) Genetic and physical mapping of a rice blast resistance locus, Pi-CO39 (t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Molecular Genetics and Genomics 267: 603-612
Chen WH, Wang YT (1996) Phalaenopsis orchid culture. Taiwan Sugar Research Institute 43: 11-16
Chen YY, Lee PF, Hsiao YY, Wu WL, Pan ZJ, Lee YI, Liu KW, Chen LJ, Liu ZJ, Tsai WC (2012) C-and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant and Cell Physiology 53: 1053-1067
Cheng CH, Chung MC, Liu SM, Chen SK, Kao FY, Lin SJ, Hsiao SH, Tseng IC, Hsing YIC, Wu HP (2005) A fine physical map of the rice chromosome 5. Molecular Genetics and Genomics 274: 337-345
Cheng JZ, Zhou YP, Lv TX, Xie CP, Tian CE (2017) Research progress on the autonomous flowering time pathway in Arabidopsis. Physiol Mol Biol Plants 23: 477-485
Cho LH, Yoon J, An G (2017) The control of flowering time by environmental factors. Plant J 90: 708-719
Choi S, Creelman RA, Mullet JE, Wing RA (1995) Construction and characterization of a bacterial artificial chromosome library of Arabidopsis thaliana. Plant Molecular Biology Reporter 13: 124-128
Chuang YC, Hung YC, Hsu CY, Yeh CM, Mitsuda N, Ohme-Takagi M, Tsai WC, Chen WH, Chen HH (2018a) A Dual Repeat Cis-Element Determines Expression of GERANYL DIPHOSPHATE SYNTHASE for Monoterpene Production in Phalaenopsis Orchids. Front Plant Sci 9: 765-778
Chuang YC, Hung YC, Tsai WC, Chen WH, Chen HH (2018b) PbbHLH4 regulates floral monoterpene biosynthesis in Phalaenopsis orchids. J Exp Bot 69: 4363-4377
Datema E, Mueller LA, Buels R, Giovannoni JJ, Visser RG, Stiekema WJ, van Ham RC (2008) Comparative BAC end sequence analysis of tomato and potato reveals overrepresentation of specific gene families in potato. BMC Plant Biol 8: 34 doi:10.1186/1471-2229-8-34
Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2008) Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res 36: e105 doi: 10.1093/nar/gkn425
Donnison IS, O'Sullivan DM, Thomas A, Canter P, Moore B, Armstead I, Thomas H, Edwards KJ, King IP (2005) Construction of a Festuca pratensis BAC library for map-based cloning in Festulolium substitution lines. Theor Appl Genet 110: 846-851
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323: 133-138
English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid JG, Worley KC, Gibbs RA (2012) Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One 7: e47768 https://doi.org/10.1371/journal.pone.0047768
Fang G, Munera D, Friedman DI, Mandlik A, Chao MC, Banerjee O, Feng Z, Losic B, Mahajan MC, Jabado OJ, Deikus G, Clark TA, Luong K, Murray IA, Davis BM, Keren-Paz A, Chess A, Roberts RJ, Korlach J, Turner SW, Kumar V, Waldor MK, Schadt EE (2012) Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol 30: 1232-1239
Feng J, Vick BA, Lee MK, Zhang HB, Jan CC (2006) Construction of BAC and BIBAC libraries from sunflower and identification of linkage group-specific clones by overgo hybridization. Theor Appl Genet 113: 23-32
Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7: 461-465
Fudge JB, Lee RH, Laurie RE, Mysore KS, Wen J, Weller JL, Macknight RC (2018) Medicago truncatula SOC1 Genes Are Up-regulated by Environmental Cues That Promote Flowering. Front Plant Sci 9: 496 https://doi.org/10.3389/fpls.2018.00496
Gao M, Li G, McCombie WR, Quiros CF (2005) Comparative analysis of a transposon-rich Brassica oleracea BAC clone with its corresponding sequence in A. thaliana. Theor Appl Genet 111: 949-955
Gentzbittel L, Abbott A, Galaud JP, Georgi L, Fabre F, Liboz T, Alibert G (2002) A bacterial artificial chromosome (BAC) library for sunflower, and identification of clones containing genes for putative transmembrane receptors. Mol Genet Genomics 266: 979-987
Gindullis F, Dechyeva D, Schmidt T (2001) Construction and characterization of a BAC library for the molecular dissection of a single wild beet centromere and sugar beet (Beta vulgaris) genome analysis. Genome 44: 846-855
Gualtieri G, Kulikova O, Limpens E, Kim D-J, Cook DR, Bisseling T, Geurts R (2002) Microsynteny between pea and Medicago truncatula in the SYM2 region. Plant molecular biology 50: 225-235
Guo J, Xu N, Li Z, Zhang S, Wu J, Kim DH, Sano Marma M, Meng Q, Cao H, Li X, Shi S, Yu L, Kalachikov S, Russo JJ, Turro NJ, Ju J (2008) Four-color DNA sequencing with 3'-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides. Proc Natl Acad Sci USA 105: 9145-9150
Hagihara E, Matsuhira H, Ueda M, Mikami T, Kubo T (2005) Sugar beet BAC library construction and assembly of a contig spanning Rf1, a restorer-of-fertility gene for Owen cytoplasmic male sterility. Mol Genet Genomics 274: 316-323
Hong G (1997) A rapid and accurate strategy for rice contig map construction by combination of fingerprinting and hybridization. Plant Mol Biol 35: 129-133
Hong G, Qian Y, Yu S, Hu X, Zhu J, Tao W, Li W, Su C, Zhao H, Qiu L (1997) A 120 kilobase resolution contig map of the rice genome. DNA sequence 7: 319-335
Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Shih HH, Chen WH, Tsai WC, Chen HH (2011) Research on orchid biology and biotechnology. Plant Cell Physiol 52: 1467-1486
Hsu CC, Chung YL, Chen TC, Lee YL, Kuo YT, Tsai WC, Hsiao YY, Chen YW, Wu WL, Chen HH (2011) An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. BMC Plant Biol 11: 3 doi:10.1186/1471-2229-11-3
Hsu CC, Chen YY, Tsai WC, Chen WH, Chen HH (2015) Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. Plant Physiol 168: 175-191
Hsu CC, Su CJ, Jeng MF, Chen WH, Chen HH (2019) A HORT1 Retrotransposon Insertion in the PeMYB11 Promoter Causes Harlequin/Black Flowers in Phalaenopsis Orchids. Plant Physiol 180: 1535-1548
Islam-Faridi M, Childs K, Klein P, Hodnett G, Menz M, Klein R, Rooney W, Mullet J, Stelly D, Price H (2002) A molecular cytogenetic map of sorghum chromosome 1: fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161: 345-353
Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41: 566-572
Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M (2015) Improved data analysis for the MinION nanopore sequencer. Nat Methods 12: 351-356
Jaudal M, Zhang L, Che C, Li G, Tang Y, Wen J, Mysore KS, Putterill J (2018) A SOC1-like gene MtSOC1a promotes flowering and primary stem elongation in Medicago. J Exp Bot 69: 4867-4880
Jenkins G, Hasterok R (2007) BAC 'landing' on chromosomes of Brachypodium distachyon for comparative genome alignment. Nat Protoc 2: 88-98
Jeon JS, Ronald PC (2007) Use of Nipponbare BAC clones for physical mapping of an R gene locus in rice. Methods Mol Biol 354: 45-56
Jheng CF, Chen TC, Lin JY, Chen TC, Wu WL, Chang CC (2012) The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids. Plant science 190: 62-73
Jiang J, Wang S (2002) Identification of a 118-kb DNA fragment containing the locus of blast resistance gene Pi-2 (t) in rice. Molecular genetics and genomics 268: 249-252
Jiang Y, Peng J, Zhu Y, Su W, Zhang L, Jing Y, Lin S, Gao Y (2019) The Role of EjSOC1s in Flower Initiation in Eriobotrya japonica. Front Plant Sci 10: 253 https://doi.org/10.3389/fpls.2019.00253
Joobeur T, Gusmini G, Zhang X, Levi A, Xu Y, Wehner TC, Oliver M, Dean RA (2006) Construction of a watermelon BAC library and identification of SSRs anchored to melon or Arabidopsis genomes. Theor Appl Genet 112: 1553-1562
Kao YY, Chang SB, Lin TY, Hsieh CH, Chen YH, Chen WH, Chen CC (2001) Differential accumulation of heterochromatin as a cause for karyotype variation in Phalenopsis orchids. Annals of Botany 87: 387-391
Kilian A, Chen J, Han F, Steffenson B, Kleinhofs A (1997) Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. In Oryza: From Molecule to Plant. Springer, pp 187-195
Kim J-S, Childs KL, Islam-Faridi MN, Menz MA, Klein RR, Klein PE, Price HJ, Mullet JE, Stelly DM (2002) Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome 45: 402-412
Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Adam MP (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30: 693-700
Kotani H, Sato S, Fukami M, Hosouchi T, Nakazaki N, Okumura S, Wada T, Liu Y-G, Shibata D, Tabata S (1997) A fine physical map of Arabidopsis thaliana chromosome 5: Construction of a sequence-ready contig map. DNA Research 4: 371-378
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution 35: 1547-1549
Kumar SV, Lucyshyn D, Jaeger KE, Alos E, Alvey E, Harberd NP, Wigge PA (2012) Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484: 242-245
Lamoureux D, Bernole A, Le Clainche I, Tual S, Thareau V, Paillard S, Legeai F, Dossat C, Wincker P, Oswald M, Merdinoglu D, Vignault C, Delrot S, Caboche M, Chalhoub B, Adam-Blondon AF (2006) Anchoring of a large set of markers onto a BAC library for the development of a draft physical map of the grapevine genome. Theor Appl Genet 113: 344-356
Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61: 2247-2254
Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299: 682-686
Li X, Tan L, Huang H, Zhu Z, Li C, Hu S, Sun C (2008) Construction of a bacterial artificial chromosome (BAC) library of common wild rice (Oryza rufipogon Griff.) for map-based cloning of genes selected during the domestication of rice. Biotechnol Lett 30: 555-561
Lijavetzky D, Muzzi G, Wicker T, Keller B, Wing R, Dubcovsky J (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42: 1176-1182
Lin S, Lee HC, Chen WH, Chen CC, Kao YY, Fu YM, Chen YH, Lin TY (2001) Nuclear DNA contents Phalenopsis species and Doritis pulcherrima. J Amer Soc Hort Sci 126: 195-199
Lin Y-r, Draye X, Qian X, Ren S, Zhu L-h, Tomkins J, Wing RA, Li Z, Paterson AH (2000) Locus-specific contig assembly in highly-duplicated genomes, using the BAC-RF method. Nucleic Acids Research 28: e23
Liu G, Lu G, Zeng L, Wang G-L (2002) Two broad-spectrum blast resistance genes, Pi9 (t) and Pi2 (t), are physically linked on rice chromosome 6. Molecular Genetics and Genomics 267: 472-480
Liu T, Mao D, Zhang S, Xu C, Xing Y (2009) Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa). Theor Appl Genet 118: 1509-1517
Loomis EW, Eid JS, Peluso P, Yin J, Hickey L, Rank D, McCalmon S, Hagerman RJ, Tassone F, Hagerman PJ (2013) Sequencing the unsequenceable: expanded CGG-repeat alleles of the fragile X gene. Genome Res 23: 121-128
Luo M, Wing RA (2003) An improved method for plant BAC library construction. Methods Mol Biol 236: 3-20
Marra M, Kucaba T, Sekhon M, Hillier L, Martienssen R, Chinwalla A, Fedele J, Grover H, Gund C, McCombie WR (1999) A map for sequence analysis of the Arabidopsis thaliana genome. Nat Genet 22: 265-270
Ming R, Moore PH, Zee F, Abbey CA, Ma H, Paterson AH (2001) Construction and characterization of a papaya BAC library as a foundation for molecular dissection of a tree-fruit genome. Theor Appl Genet 102: 892-899
Mozo T, Dewar K, Dunn P, Ecker JR, Fischer S, Kloska S, Lehrach H, Marra M, Martienssen R, Meier-Ewert S (1999) A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat Genet 22: 271-275
Mozo T, Fischer S, Meier-Ewert S, Lehrach H, Altmann T (1998) Use of the IGF BAC library for physical mapping of the Arabidopsis thaliana genome. Plant J 16: 377-384
Mozo T, Fischer S, Shizuya H, Altmann T (1998) Construction and characterization of the IGF Arabidopsis BAC library. Molecular and General Genetics MGG 258: 562-570
Mun JH, Kwon SJ, Yang TJ, Kim HS, Choi BS, Baek S, Kim JS, Jin M, Kim JA, Lim MH, Lee SI, Kim HI, Kim H, Lim YP, Park BS (2008) The first generation of a BAC-based physical map of Brassica rapa. BMC Genomics 9: 280 doi:10.1186/1471-2164-9-280
Nakamura S, Asakawa S, Ohmido N, Fukui K, Shimizu N, Kawasaki S (1997) Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta2 using a highly representative rice BAC library. Mol Gen Genet 254: 611-620
Nam YW, Lee JR, Song KH, Lee MK, Robbins MD, Chung SM, Staub JE, Zhang HB (2005) Construction of two BAC libraries from cucumber (Cucumis sativus L.) and identification of clones linked to yield component quantitative trait loci. Theor Appl Genet 111: 150-161
Noir S, Patheyron S, Combes MC, Lashermes P, Chalhoub B (2004) Construction and characterisation of a BAC library for genome analysis of the allotetraploid coffee species (Coffea arabica L.). Theor Appl Genet 109: 225-230
Ohmido N, Akiyama Y, Fukui K (1998) Physical mapping of unique nucleotide sequences on identified rice chromosomes. Plant molecular biology 38: 1043-1052
Osoegawa K, Woon PY, Zhao B, Frengen E, Tateno M, Catanese JJ, de Jong PJ (1998) An improved approach for construction of bacterial artificial chromosome libraries. Genomics 52: 1-8.
Pan Z-J, Cheng C-C, Tsai W-C, Chung M-C, Chen W-H, Hu J-M, Chen H-H (2011) The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Plant and Cell Physiology 52: 1515-1531
Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161: 1661-1672
Peterson DG, Tomkins JP, Frisch DA, Wing RA, Paterson AH (2000) Construction of plant bacterial artificial chromosome (BAC) libraries: An illustrated guide. Journal of Agricultural Genomics 5: www.ncgr.org/research/jag.
Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends in plant science 1: 215-222
Quick J, Quinlan AR, Loman NJ (2014) A reference bacterial genome dataset generated on the MinION portable single-molecule nanopore sequencer. Gigascience 3: 22 doi:10.1186/2047-217X-3-22
Safar J, Noa-Carrazana JC, Vrana J, Bartos J, Alkhimova O, Sabau X, Simkova H, Lheureux F, Caruana ML, Dolezel J, Piffanelli P (2004) Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome. Genome 47: 1182-1191
Saini N, Shultz J, Lightfoot DA (2008) Re-annotation of the physical map of Glycine max for polyploid-like regions by BAC end sequence driven whole genome shotgun read assembly. BMC Genomics 9: 323 doi:10.1186/1471-2164-9-323
Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York.
Sato S, Kaneko T, Kotani H, Hayashi R, Liu Y-G, Shibata D, Tabata S (1999) A sequence-ready contig map of the top arm of Arabidopsis thaliana chromosome 3. DNA Research 6: 117-121
Sato S, Kotani H, Hayashi R, Liu Y-G, Shibata D, Tabata S (1998) A physical map of Arabidopsis thaliana chromosome 3 represented by two contigs of CIC YAC, P1, TAC and BAC clones. DNA Research 5: 163-168
Sato S, Nakamura Y, Kaneko T, Katoh T, Asamizu E, Tabata S (2000) Structural analysis of Arabidopsis thaliana chromosome 3. I. Sequence features of the regions of 4,504,864 bp covered by sixty P1 and TAC clones. DNA research 7: 131-135
Sharon D, Tilgner H, Grubert F, Snyder M (2013) A single-molecule long-read survey of the human transcriptome. Nat Biotechnol 31: 1009-1014
Shen KA, Meyers BC, Islam-Faridi MN, Chin DB, Stelly DM, Michelmore RW (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Molecular Plant-Microbe Interactions 11: 815-823
Shizuya H, Birren B, Kim U-J, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proceedings of the National Academy of Sciences 89: 8794-8797
Song IJ, Nakamura T, Fukuda T, Yokoyama J, Ito T, Ichikawa H, Horikawa Y, Kameya T, Kanno A (2006) Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Dev Genes Evol 216: 301-313
Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18: 575-583
Tadege M, Sheldon CC, Helliwell CA, Upadhyaya NM, Dennis ES, Peacock WJ (2003) Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotechnol J 1: 361-369
Tomkins J, Fregene M, Main D, Kim H, Wing R, Tohme J (2004) Bacterial artificial chromosome (BAC) library resource for positional cloning of pest and disease resistance genes in cassava (Manihot esculenta Crantz). Plant Mol Biol 56: 555-561
Tomkins J, Frisch D, Byrum J, Wing R (2000) Construction and characterization of a BAC library for the soybean cultivar A3244. Soybean Genetics Newsletter 27: 3
Tomkins J, Frisch D, Jenkins M, Barnett L, Luo M, Wing R (2000) Construction and characterization of a maize bacterial artificial chromosome (BAC) library for the inbred line B73. Maize Genetics Cooperation Newsletter: 18-19
Tomkins J, Mahalingam R, Smith H, Goicoechea J, Knap H, Wing RA (1999) A bacterial artificial chromosome library for soybean PI 437654 and identification of clones associated with cyst nematode resistance. Plant molecular biology 41: 25-32
Tomkins JP, Yu Y, Miller-Smith H, Frisch DA, Woo SS, Wing RA (1999) A bacterial artificial chromosome library for sugarcane. Theor Appl Genet 99: 419-424
Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38: e159 https://doi.org/10.1093/nar/gkq543
Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant and Cell Physiology 45: 831-844
Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant and Cell Physiology 46: 1125-1139
Tsai W-C, Pan Z-J, Hsiao Y-Y, Jeng M-F, Wu T-F, Chen W-H, Chen H-H (2008) Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant and Cell Physiology 49: 814-824
Tsai WC, Dievart A, Hsu CC, Hsiao YY, Chiou SY, Huang H, Chen HH (2017) Post genomics era for orchid research. Bot Stud 58: 61 doi:10.1186/s40529-017-0213-7
Tsai WC, Hsiao YY, Lee SH, Tung CW, Wang DP, Wang HC, Chen WH, Chen HH (2006) Expression analysis of the ESTs derived from the flower buds of Phalaenopsis equestris. Plant Sci 170: 426-432
Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45: 831-844
Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 46: 1125-1139
Tsai WC, Pan ZJ, Hsiao YY, Jeng MF, Wu TF, Chen WH, Chen HH (2008) Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant Cell Physiol 49: 814-824
Vilanova S, Romero C, Abernathy D, Abbott AG, Burgos L, Llacer G, Badenes ML (2003) Construction and application of a bacterial artificial chromosome (BAC) library of Prunus armeniaca L. for the identification of clones linked to the self-incompatibility locus. Mol Genet Genomics 269: 685-691
Vilarinhos AD, Piffanelli P, Lagoda P, Thibivilliers S, Sabau X, Carreel F, D'Hont A (2003) Construction and characterization of a bacterial artificial chromosome library of banana ( Musa acuminata Colla). Theor Appl Genet 106: 1102-1106.
Wang ML, Huang L, Bongard‐Pierce DK, Belmonte S, Zachgo EA, Morris JW, Dolan M, Goodman HM (1997) Construction of an∼ 2 Mb contig in the region around 80 cM of Arabidopsis thaliana chromosome 2. The Plant Journal 12: 711-730
Wang Q, Zhang K, Qu X, Jia J, Shi J, Jin D, Wang B (2001) Construction and characterization of a bacterial artificial chromosome library of peach. Theoretical and Applied Genetics 103: 1174-1179
Wang Q, Zhang K, Qu X, Jia J, Shi J, Jin D, Wang B (2001) Construction and characterization of a bacterial artificial chromosome library of peach. Theor Appl Genet 103: 1174-1179
Wang SL, Viswanath KK, Tong CG, An HR, Jang S, Chen FC (2019) Floral Induction and Flower Development of Orchids. Front Plant Sci 10: 1258 https://doi.org/10.3389/fpls.2019.01258
Wang W, Zhai W, Luo M, Jiang G, Chen X, Li X, Wing RA, Zhu L (2001) Chromosome landing at the bacterial blight resistance gene Xa4 locus using a deep coverage rice BAC library. Mol Genet Genomics 265: 118-125
Wang WM, Jiang GH, Wang SQ, Zhu LH, Zhai WX (2001) [Construction of a deep coverage rice BAC library and identification of clones associated with disease-resistant genes]. Yi Chuan Xue Bao 28: 120-128
Wang Y, Yang Q, Wang Z (2014) The evolution of nanopore sequencing. Front Genet 5: 449 https://doi.org/10.3389/fgene.2014.00449
Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22: 4922-4931.
Xu M, Korban SS (2002) AFLP-derived SCARs facilitate construction of a 1.1 Mb sequence-ready map of a region that spans the Vf locus in the apple genome. Plant molecular biology 50: 803-818
Xu M, Song J, Cheng Z, Jiang J, Korban SS (2001) A bacterial artificial chromosome (BAC) library of Malus floribunda 821 and contig construction for positional cloning of the apple scab resistance gene Vf. Genome 44: 1104-1113
Yan L, Wang X, Liu H, Tian Y, Lian J, Yang R, Hao S, Wang X, Yang S, Li Q, Qi S, Kui L, Okpekum M, Ma X, Zhang J, Ding Z, Zhang G, Wang W, Dong Y, Sheng J (2015) The Genome of Dendrobium officinale Illuminates the Biology of the Important Traditional Chinese Orchid Herb. Mol Plant 8: 922-934
Yang Z, Choi S, Frisch D, Fang D, Moonan F, Molina J, Plancarte J, Roose M, Wing R, Mirkov T (1999) Towards map-based cloning of the Ctv resistance gene from Poncirus trifoliata. Abstract P110. In Plant & Anim. Genome Conf. VII,
Yasui Y, Mori M, Matsumoto D, Ohnishi O, Campbell CG, Ota T (2008) Construction of a BAC library for buckwheat genome research - an application to positional cloning of agriculturally valuable traits. Genes Genet Syst 83: 393-401
Yoo EY, Kim S, Kim J-Y, Kim B-D (2001) Construction and characterization of a bacterial artificial chromosome library from chili pepper. Molecules and cells 12: 117-120
Yu H, Goh CJ (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiology 123: 1325-1336
Yu Y, Tomkins J, Waugh R, Frisch D, Kudrna D, Kleinhofs A, Brueggeman R, Muehlbauer G, Wise R, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theoretical and Applied Genetics 101: 1093-1099
Yuan Q, Liang F, Hsiao J, Zismann V, Benito MI, Quackenbush J, Wing R, Buell R (2000) Anchoring of rice BAC clones to the rice genetic map in silico. Nucleic Acids Res 28: 3636-3641
Zeng L, Yin Z, Chen J, Leung H, Wang G-L (2002) Fine genetic mapping and physical delimitation of the lesion mimic gene Spl11 to a 160-kb DNA segment of the rice genome. Molecular genetics and genomics 268: 253-261
Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao YY, Niu SC, Wang JY, Lin YC, Xu Q, Chen LJ, Yoshida K, Fujiwara S, Wang ZW, Zhang YQ, Mitsuda N, Wang M, Liu GH, Pecoraro L, Huang HX, Xiao XJ, Lin M, Wu XY, Wu WL, Chen YY, Chang SB, Sakamoto S, Ohme-Takagi M, Yagi M, Zeng SJ, Shen CY, Yeh CM, Luo YB, Tsai WC, Van de Peer Y, Liu ZJ (2017) The Apostasia genome and the evolution of orchids. Nature 549: 379-383
Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, Liu KW, Yoshida K, Zhang LS, Chang SB, Chen F, Shi Y, Su YY, Zhang YQ, Chen LJ, Yin Y, Lin M, Huang H, Deng H, Wang ZW, Zhu SL, Zhao X, Deng C, Niu SC, Huang J, Wang M, Liu GH, Yang HJ, Xiao XJ, Hsiao YY, Wu WL, Chen YY, Mitsuda N, Ohme-Takagi M, Luo YB, Van de Peer Y, Liu ZJ (2016) The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Sci Rep 6: 19029 doi:10.1038/srep19029
Zhang HB, Choi S, Woo SS, Li Z, Wing RA (1996) Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred mapping population. Molecular Breeding 2: 11-24
Zhang HB, Wing RA (1997) Physical mapping of the rice genome with BACs. In Oryza: From Molecule to Plant. Springer, pp 115-127
Zhao Q, Zhang Y, Cheng Z, Chen M, Wang S, Feng Q, Huang Y, Li Y, Tang Y, Zhou B (2002) A fine physical map of the rice chromosome 4. Genome research 12: 817-823
Zwick MS, Islam-Faridi MN, Czeschin DG, Wing RA, Hart GE, Stelly DM, Price HJ (1998) Physical mapping of the liguleless linkage group in Sorghum bicolor using rice RFLP-selected sorghum BACs. Genetics 148: 1983-1992
李思誼 (2006) 姬蝴蝶蘭開花時間相關基因 (PeSOC1) 之選殖與特性分析. 成功大學生命科學系學位論文: 1-73
張瀞文 (2003) 姬蝴蝶蘭乙烯受器基因 PeERS cDNA 之選殖與特性分析. 成功大學生物學系學位論文: 1-73
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔