(3.235.245.219) 您好!臺灣時間:2021/05/10 02:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:侯秉賦
研究生(外文):Ping-FuHou
論文名稱:長期施用有機質肥料及化學肥料對土壤微生物組成及甜玉米產量之影響
論文名稱(外文):Effects of long-term application of organic and chemical fertilizer on composition of soil microorganisms and yields of sweet corn
指導教授:張文綺黃浩仁
指導教授(外文):Wen-Chi ChangHao-Jen Huang
學位類別:博士
校院名稱:國立成功大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:87
中文關鍵詞:永續農業總體基因體學水旱田輪作有機質肥料土壤微生物族群
外文關鍵詞:Sustainable agricultureMetagenomicsPaddy-upland rotationOrganic fertilizerSoil microbial communities
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高雄區農業改良場長期有機農法試驗始於1988年,原始試驗目標著重於比較2種輪作系統(基於不同的輪作作物組合而有2種輪作系統,自2004年後R1:水旱田輪作;R2:旱田輪作),與3種施肥方式(OF:有機質肥料、IF:折衷肥料、CF:化學肥料),對於土壤性質與作物產量的影響。本論文主要探討不同輪作及施肥方式對於土壤微生物及甜玉米的產量的影響。
首先,多樣化的土壤微生物族群是永續農業的重要決定因子,豐富的微生物多樣性具備廣泛改善土壤健康特質,可促進經濟作物的生長。因此在本節中,主要針對水旱田輪作對於土壤微生物多樣性的益處及特定微生物表現情形進行研究。我們在25年長期維護的試驗田區進行土壤採樣,利用次世代定序技術獲得微生物相大數據,再以新的豐度(novel enrichment)及共同發生(co-occurrence)分析方法對微生物相進行多因子試驗(3種施肥方式結合2種輪作系統)。我們首先發現不同輪作方式影響土壤微生物相組成大於不同施肥方式的證據。水旱田輪作較旱田輪作可明顯增加微生物多樣性,且不論是施用有機質肥料、化學肥料或折衷肥料均是如此。此外,施用有機質肥料的土壤與水旱田輪作的土壤其特定優勢細菌相的組成極為相似,比化學肥料土壤與水旱田輪作土壤的菌相還要相似。此結果暗示,如果化學肥料的施用是必要的,則水旱田輪作對於永續農業來說可能是最好的選擇。有趣的是,盆栽試驗驗證了新的分析方式的預測結果,顯示微生物多樣性越高與特定微生物的組成均與增加作物病害抗性之間有顯著的正相關性。因此,水旱田輪作對於促進微生物多樣性與特性微生物組成具有優異性,對於永續農業來說可以維持土壤的健康。
最後,氣候變遷影響全球作物生產在過去10年間極為明顯,探討不同施肥條件下對於作物生產的穩定性,及對於永續農業來說均是相當重要的議題。本節的目標主要是探討不同施肥方式與氣候變化對於南台灣甜玉米產量穩定之影響。在同樣的試驗田中,我們調查2009年至2018年的甜玉米產量,我們發現不同施肥方式的確影響新鮮甜玉米的經濟產量,例如:產量在有機質肥料區略為上升,但於化學肥料(p = 0.0001)與折衷肥料區(p = 0.0061)卻明顯下降。因此,基於這10年的觀察紀錄,我們也同時探討不同施肥方式、氣候變化及土壤性質與玉米產量的關聯性。藉由線性複回歸方程式及回歸樹(regression tree)分析,結果均顯示甜玉米平均穗重與相對濕度之間存在明顯負相關性,尤其在化學肥料處理區。在本研究中,我們首次指出化學肥料相對於有機質肥料及折衷肥料處理,在相對濕度變化的加乘影響下,其產量韌性表現是最低的。因此,無論是使用慣行農法或是純有機栽種,化學肥料對於永續農業來說都是最壞的選擇。
The long-term organic farming experiment on KDARES (Kaohsiung District Agriculture Research Extension Station) were initiated in 1988. The original goal of this experiment was focused on comparison with soil properties and crop yield between two rotation systems (R1 and R2 were based on different crops combination. Since 2004, R1: paddy upland rotation; R2: upland rotation) and among three fertilization methods (OF: Organic fertilizer, IF: Integrated fertilizer, CF: Chemical fertilizer). In this study, effects of different fertilization treatment with rotation systems on microorganisms and yield trends of sweet corn were analyzed.
Firstly, diverse soil microbial community is determinant for sustainable agriculture. Rich microbial diversity has presumably improved soil health for economic crops to grow. In this part, the benefits of paddy-upland rotation on soil microbial diversity and specific microbes are thus intensively explored. The microbiome from multiple factor experiment (three fertilizations coupled with two rotation systems) were investigated by novel enrichment and co-occurrence analysis in our experimental field, which well maintained for 25 years. Using next-generation sequencing technique, we firstly present explicit evidence that different rotation systems rather than fertilizations mightily governed the soil microbiome. Paddy-upland rotation (R1) obviously increase more microbial diversity than upland rotation (R2) whether organic (OF), chemical (CF) or integrated fertilizers (IF) were concomitantly applied. Besides, the specific bacterial composition dominated in OF soil is more similar to that of R1 than to CF, suggesting that paddy-upland rotation might be the best option for sustainable agriculture if chemical fertilizer is still required. Interestingly, the pot bioassay verified clearly the novel analysis prediction, illustrating that greater microbial diversity and specific microbial composition correlated significantly with disease resistance. This finding highlights the eminence of paddy-upland rotation in promoting microbial diversity and specific microbial compositions, preserving soil health for sustainable agriculture.
Finally, climate change affects global crop production in the past decade. Exploring the impact of different fertilization methods on crop yield stability has become an extremely important topic in sustainable agriculture. In this part, the objective is to explore the effects of various fertilization regimes with climate variability on yield stability for sweet corn production in southern Taiwan. In the same experimental field, we investigated the yields of sweet corn from 2009 to 2018. We found that different fertilization changed the marketable yields of fresh fruit (ear), which slightly increased for organic fertilizer, but substantially decreased for both chemical (p = 0.0001) and integrated (p = 0.0061) fertilizer. Thus, based on these 10 years of observation, yields among fertilization treatments were analyzed with weather and soil parameters to determine the possible factors involved. Both multiple linear regression equation (p 〈 0.0001, adj. R2 〉 0.57) and regression tree analysis illustrated significantly negative correlations between average ear weight and relative humidity under the chemical fertilizer treatment. In this study, we show for the first time that chemical fertilizer had the lowest yield resilience in response to regional relative humidity change compared to organic and integrated fertilizers. Therefore, comparing to conventional cultivation and organic farming, the chemical fertilizer is the worst choice for sustainable agriculture.
Table of contents
List of Tables 3
List of Figures 4
Abbreviation 5
Chapter 1 6
Introduction: An overview of long-term fertilization on KDARES (Kaohsiung District Agriculture Research Extension Station) 6
1.1 Background 6
1.2 Long-term organic farming 6
Chapter 2 10
Paddy-upland rotation for sustainable agriculture with regards to diverse soil microbial community 10
2.1 Background 10
2.2 Materials and methods 11
2.3 Results 16
2.4 Discussion 20
Chapter 3 23
Long-term effects of fertilizers with regional climate variability on yield trends of sweet corn 23
3.1 Background 23
3.2 Materials and methods 25
3.3 Results 29
3.4 Discussion 32
Chapter 4 36
Summary and Conclusions 36
4.1 Summary of findings 36
4.2 Conclusions 37
References 39
Tables 45
Figures 66
Appendix 84
王銀波、黃山內、趙震慶 (1996)。有機農耕法作物養分吸收與殘留之評估。中華農學會報,173,103-119。
周浩平、陳泰元、曾敏南、張逸軒、黃㯖昌 (2015)。微生物農藥之開發與應用。興大農業,92,8-15。
侯秉賦、張文綺 (2015)。高雄區農業改良場28年有機栽培試驗研究成果回顧。高雄區農業改良場研究彙報,26(2),21-33。
徐華盛、蔡永暭 (2001)。不同農耕法及輪作系統之比較研究。高雄區農業改良場研究彙報,12,37-54。
黃山內、趙震慶 (1990)。有機農業可行性研究之初步成果。高雄區農業改良場農情半月刊,194,11-17。
黃賢喜、戴順發、陳東鐘 (1993)。有機農耕法與慣行農耕法對作物產量及生產效益之影響。高雄區農業改良場研究彙報,5(1),1-15。
趙維良、趙震慶 (2007)。長期進行有機農耕法對土壤微生物族群與活性之衝擊。中華農學會報,8(6),517-536。
趙維良、趙震慶 (2008)。連續十七年有機農耕法之土壤理化性質的評估。台灣農學會 報,9(3),270-291。
趙震慶、蘇楠榮、王銀波 (1996)。有機農耕法之土壤肥力的變遷。中華農學會報,173,85-102。
劉英杰 (1998)。有機農業應用技術之研究。高雄區農業改良場86年年報,134。
蔡永暭 (2002)。有機農業14年試驗成果報告。高雄區農業專訊,42,15-16。
蔡永暭 (2006)。施肥對輪作田有機水稻及蔬菜生產之影響。高雄區農業改良場研究彙報,17(2),1-18。
蔡永暭 (2000)。有機農法中施用堆肥之功效。高雄區農業專訊,32,14-16。
戴順發、陳東鐘、黃賢喜 (1994)。有機農耕法與慣行農耕法對作物品質、病蟲害與雜草控制之影響。高雄區農業改良場研究彙報,5,1-22。
戴順發、蘇士閔、林永鴻 (2010)。21年長期有機農法試驗田土壤及作物生產監測(摘要)。有機農業研究成果及管理技術研討會。
魏偉勝、戴順發、鍾仁賜 (2015)。不同之輪作制度與施肥管理經二十年後對土壤化學性質與碳與氮之累積與轉變之影響。台灣農業化學與食品科學,53(1 , 2),43-54。
蘇士閔、戴順發、吳志文、林永鴻 (2009)。長期有機農法之水稻生產效益佳。高雄區農業專訊,70,4-5。
蘇士閔、戴順發、林永鴻、李穎宏 (2009)。長期有機農法之蔬菜生產效益。高雄區農業專訊,69,5-7。
Adesina, M. F., Lembke, A., Costa, R., Speksnijder, A., & Smalla, K. (2007). Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum: Site-dependent composition and diversity revealed. Soil Biology and Biochemistry, 39(11), 2818-2828. doi:10.1016/j.soilbio.2007.06.004
Adnan, A. A., Jibrin, J. M., Kamara, A. Y., Abdulrahman, B. L., Shaibu, A. S., & Garba, II. (2017). CERES-Maize Model for Determining the Optimum Planting Dates of Early Maturing Maize Varieties in Northern Nigeria. Front Plant Sci, 8, 1118. doi:10.3389/fpls.2017.01118
Amlinger, F., Gotz, B., Dreher, P., Geszti, J., & Weissteiner, C. (2003). Nitrogen in biowaste and yard waste compost: dynamicsof mobilisation and availability—a review. European Journal of Soil Biology, 39, 107-116.
Bi, L., Zhang, B., Liu, G., Li, Z., Liu, Y., Ye, C., . . . Liang, Y. (2009). Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agriculture, Ecosystems & Environment, 129(4), 534-541. doi:10.1016/j.agee.2008.11.007
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., . . . Knight, R. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J, 6(8), 1621-1624. doi:10.1038/ismej.2012.8
Chang, E.-H., Chung, R.-S., & Tsai, Y.-H. (2007). Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Science and Plant Nutrition, 53(2), 132-140. doi:10.1111/j.1747-0765.2007.00122.x
Chao, W.-L., Gan, K. D., & Chao, C. C. (1993). Nitrification and nitrifying potential of tropical and subtropical soils. Bio. Fertil. Soils, 15, 87-90.
Chao, W. L., Tu, H. J., & Chao, C. C. (1996). Nitrogen transformations in tropical soils under conventional and sustainable farming systems. Bio. Fertil. Soils, 21, 252-256.
Chen, Z.-S., Hseu, Z.-Y., & Tsai, C.-C. (2015). The Soils of Taiwan: Springer.
Darwish, O. H., Persaud, N., & Martens, D. C. (1995). Effect of long-term application of animal manure on physical properties of three soils. Plant and Soil, 176, 289-295.
Diacono, M., & Montemurro, F. (2010). Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable Development, 30(2), 401-422. doi:10.1051/agro/2009040
Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 10(10), 996-998. doi:10.1038/nmeth.2604
Edmeades, D. C. (2003). The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutrient Cycling in Agroecosystems, 66, 165-180.
Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., . . . Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A, 112(8), E911-920. doi:10.1073/pnas.1414592112
Erbilgin, O., McDonald, K. L., & Kerfeld, C. A. (2014). Characterization of a Planctomycetal Organelle: a Novel Bacterial Microcompartment for the Aerobic Degradation of Plant Saccharides. Appl Environ Microbiol, 80(7), 2193-2205.
Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A, 103(3), 626-631. doi:10.1073/pnas.0507535103
Fuerst, J. A., & Sagulenko, E. (2011). Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol, 9(6), 403-413. doi:10.1038/nrmicro2578
Gaiero, J. R., McCall, C. A., Thompson, K. A., Day, N. J., Best, A. S., & Dunfield, K. E. (2013). Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot, 100(9), 1738-1750. doi:10.3732/ajb.1200572
Gajda, A. M., Doran, J. W., Kettler, T. A., Wienhold, B. J., Pikul, J. L., & Cambardella, C. A. (2000). Soil quality evaluations of alternative and conventional management systems in the Great Plains. In R. Lal, et al (Ed.), Assessment Methods for Soil Carbon (pp. 381-400). Boca Raton, FL: CRC Press.
Glick, B. R. (2015). Beneficial Plant-Bacterial Interactions: Springer Cham Heidelberg New York Dordrecht London.
Gower, J. C. (1966). Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis. Biometrika, 53, 325-&. doi:Doi 10.2307/2333639
Grube, M., Schloter, M., Smalla, K., & Berg, G. (2015). THE PLANT MICROBIOME AND ITS IMPORTANCE FOR PLANT AND HUMAN HEALTH. In. doi:10.3389/978-2-88919-378-3
Gyaneshwar, P., Hirsch, A. M., Moulin, L., Chen, W.-M., Elliott, G. N., Bontemps, C., . . . James, E. K. (2011). Legume-Nodulating Betaproteobacteria: Diversity, Host Range, and Future Prospects. Molecular Plant-Microbe Interactions, 24(11), 1276-1288. doi:10.1094/mpmi
Hartmann, M., Frey, B., Mayer, J., Mader, P., & Widmer, F. (2015). Distinct soil microbial diversity under long-term organic and conventional farming. ISME J, 9(5), 1177-1194. doi:10.1038/ismej.2014.210
Hou, P. F., Chien, C. H., Chiang-Hsieh, Y. F., Tseng, K. C., Chow, C. N., Huang, H. J., & Chang, W. C. (2018). Paddy-upland rotation for sustainable agriculture with regards to diverse soil microbial community. Sci Rep, 8(1), 7966. doi:10.1038/s41598-018-26181-2
Hsu, H.-H., Chou, C., Wu, Y.-c., Lu, M.-M., Chen, C.-T., & Chen, Y.-M. (2011). Climate Change in Taiwan: Scientific Report 2011 (Summary). Taipei, Taiwan, ROC: National Science Council.
Hu, J., Wei, Z., Friman, V. P., Gu, S. H., Wang, X. F., Eisenhauer, N., . . . Jousset, A. (2016). Probiotic Diversity Enhances Rhizosphere Microbiome Function and Plant Disease Suppression. mBio, 7(6). doi:10.1128/mBio.01790-16
Islam, R., Glenney, D. C., & Lazarovits, G. (2015). No-till strip row farming using yearly maize-soybean rotation increases yield of maize by 75 %. Agronomy for Sustainable Development, 35(2), 837-846. doi:10.1007/s13593-015-0289-y
Karl, T. R., Kukla, G., Razuvayev, V. N., Changery, M. J., Quayle, R. G., Heim, R. R., . . . Fu, C. B. (1991). Global warming: Evidence for asymmetric diurnal temperature change. Geophysical Research Letters, 18(12), 2253-2256. doi:10.1029/91gl02900
Kong, A. Y. Y., Six, J., Bryant, D. C., Denison, R. F., & van Kessel, C. (2005). The Relationship between Carbon Input, Aggregation, and Soil Organic Carbon Stabilization in Sustainable Cropping Systems. Soil Science Society of America Journal, 69(4), 1078. doi:10.2136/sssaj2004.0215
Krug, E. C., & Frink, C. R. (1983). Acid Rain on Acid Soil: ANew Perspective. Science, 221(4610), 520-525.
Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623-1627. doi:10.1126/science.1097396
Lana, M. A., Eulenstein, F., Schlindwein, S. L., Graef, F., Sieber, S., & von Hertwig Bittencourt, H. (2017). Yield stability and lower susceptibility to abiotic stresses of improved open-pollinated and hybrid maize cultivars. Agronomy for Sustainable Development, 37(4). doi:10.1007/s13593-017-0442-x
Leff, J. W., Jones, S. E., Prober, S. M., Barberan, A., Borer, E. T., Firn, J. L., . . . Fierer, N. (2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci U S A, 112(35), 10967-10972. doi:10.1073/pnas.1508382112
Liu, B., Glenn, D., & Buckley, K. (2008). Trichoderma communities in soils from organic, sustainable, and conventional farms, and their relation with Southern blight of tomato. Soil Biology and Biochemistry, 40(5), 1124-1136. doi:10.1016/j.soilbio.2007.12.005
Liu, B., Gumpertz, M. L., Hu, S., & Ristaino, J. B. (2007). Long-term effects of organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight. Soil Biology and Biochemistry, 39(9), 2302-2316. doi:10.1016/j.soilbio.2007.04.001
Liu, T., Huang, R., Cai, T., Han, Q., & Dong, S. (2017). Optimum Leaf Removal Increases Nitrogen Accumulation in Kernels of Maize Grown at High Density. Sci Rep, 7, 39601. doi:10.1038/srep39601
Lobell, D. B., & Asner, G. P. (2003). Climate and management contributions to recent trends in U.S. agricultural yields. Science, 299, 1032.
Lobell, D. B., Bänziger, M., Magorokosho, C., & Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1(1), 42-45. doi:10.1038/nclimate1043
Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J., Ochoa, V., Gozalo, B., . . . Singh, B. K. (2015). Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci U S A, 112, 15684-15689. doi:10.6084/
Manna, M. C., Swarup, A., Wanjari, R. H., Singh, Y. V., Ghosh, P. K., Singh, K. N., . . . Saha, M. N. (2006). Soil Organic Matter in a West Bengal Inceptisol after 30 Years of Multiple Cropping and Fertilization. Soil Science Society of America Journal, 70(1). doi:10.2136/sssaj2005.0180
Medeiros, W. N., Valente, D. S. M., Queiroz, D. M. d., Pinto, F. d. A. d. C., & Assis, I. R. d. (2018). Apparent soil electrical conductivity in two different soil types. Revista CiÊncia AgronÔmica, 49(1). doi:10.5935/1806-6690.20180005
Mendes, R., Kruijt, M., Bruijn, I. d., Dekkers, E., Voort, M. v. d., Schneider, J. H. M., . . . Raaijmakers, J. M. (2011). Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Science, 332, 1097-1100. doi:10.1126/science.1203980
Mortley, D. G., Bonsi, C. K., Loretan, P. A., Hill, W. A., & Morris, C. E. (2000). High Relative Humidity Increases Yield, Harvest Index, Flowering, and Gynophore Growth of Hydroponically Grown Peanut Plants. HortScience, 35(1), 46-48.
Nemergut, D. R., Townsend, A. R., Sattin, S. R., Freeman, K. R., Fierer, N., Neff, J. C., . . . Schmidt, S. K. (2008). The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Environ Microbiol, 10(11), 3093-3105. doi:10.1111/j.1462-2920.2008.01735.x
Pareja-Sánchez, E., Cantero-Martínez, C., Álvaro-Fuentes, J., & Plaza-Bonilla, D. (2020). Impact of tillage and N fertilization rate on soil N2O emissions in irrigated maize in a Mediterranean agroecosystem. Agriculture, Ecosystems & Environment, 287. doi:10.1016/j.agee.2019.106687
Pershina, E., Valkonen, J., Kurki, P., Ivanova, E., Chirak, E., Korvigo, I., . . . Andronov, E. (2015). Comparative Analysis of Prokaryotic Communities Associated with Organic and Conventional Farming Systems. PLOS ONE, 10(12), e0145072. doi:10.1371/journal.pone.0145072
Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol, 11(11), 789-799. doi:10.1038/nrmicro3109
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., . . . Glockner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res, 41(D1), D590-D596. doi:10.1093/nar/gks1219
Reddy, P. P. (2014). Plant Growth Promoting Rhizobacteria for Horticultural Crop Protection: Springer New Delhi Heidelberg New York Dordrecht London.
Reganold, J. P., Andrews, P. K., Reeve, J. R., Carpenter-Boggs, L., Schadt, C. W., Alldredge, J. R., . . . Zhou, J. (2010). Fruit and soil quality of organic and conventional strawberry agroecosystems. PLOS ONE, 5(9). doi:10.1371/journal.pone.0012346
Rodríguez-Pérez, J. R., Plant, R. E., Lambert, J.-J., & Smart, D. R. (2011). Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content. Precision Agriculture, 12(6), 775-794. doi:10.1007/s11119-011-9220-y
Roriz, M., Carvalho, S. M., & Vasconcelos, M. W. (2014). High relative air humidity influences mineral accumulation and growth in iron deficient soybean plants. Front Plant Sci, 5, 726. doi:10.3389/fpls.2014.00726
Ruane, A. C., Cecil, L. D., Horton, R. M., Gordón, R., McCollum, R., Brown, D., . . . Rosenzweig, C. (2013). Climate change impact uncertainties for maize in Panama: Farm information, climate projections, and yield sensitivities. Agricultural and Forest Meteorology, 170, 132-145. doi:10.1016/j.agrformet.2011.10.015
Sabaratnam, S., & Traquair, J. A. (2002). Formulation of a Streptomyces Biocontrol Agent for the Suppression of Rhizoctonia Damping-off in Tomato Transplants. Biological Control, 23(3), 245-253. doi:10.1006/bcon.2001.1014
Saleque, M. A., Abedin, M. J., Bhuiyan, N. I., Zaman, S. K., & Panaullah, G. M. (2004). Long-term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of lowland rice. Field Crops Research, 86(1), 53-65. doi:10.1016/s0378-4290(03)00119-9
Sarker, M. A. R., Alam, K., & Gow, J. (2012). Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data. Agricultural Systems, 112, 11-16. doi:10.1016/j.agsy.2012.06.004
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., . . . Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 75(23), 7537-7541. doi:10.1128/AEM.01541-09
Schrama, M., de Haan, J. J., Kroonen, M., Verstegen, H., & Van der Putten, W. H. (2018). Crop yield gap and stability in organic and conventional farming systems. Agriculture, Ecosystems & Environment, 256, 123-130. doi:10.1016/j.agee.2017.12.023
Shaner, G., & Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in knox wheat. Phytopathology, 67, 1051-1056.
Sturn, A., Quackenbush, J., & Trajanoski, Z. (2002). Genesis: cluster analysis of microarray data. Bioinformatics, 18(1), 207-208.
Tamm, L., Thürig, B., Bruns, C., Fuchs, J. G., Köpke, U., Laustela, M., . . . Fließbach, A. (2010). Soil type, management history, and soil amendments influence the development of soil-borne (Rhizoctonia solani, Pythium ultimum) and air-borne (Phytophthora infestans, Hyaloperonospora parasitica) diseases. European Journal of Plant Pathology, 127(4), 465-481. doi:10.1007/s10658-010-9612-2
Tao, F., Yokozawa, M., Xu, Y., Hayashi, Y., & Zhang, Z. (2006). Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agricultural and Forest Meteorology, 138(1-4), 82-92. doi:10.1016/j.agrformet.2006.03.014
Thomas, F., Hehemann, J. H., Rebuffet, E., Czjzek, M., & Michel, G. (2011). Environmental and gut bacteroidetes: the food connection. Front Microbiol, 2, 93. doi:10.3389/fmicb.2011.00093
Tikhonovich, I. A., & Provorov, N. A. (2011). Microbiology is the basis of sustainable agriculture: an opinion. Annals of Applied Biology, 159(2), 155-168. doi:10.1111/j.1744-7348.2011.00489.x
Tokatlidis, I. S. (2012). Adapting maize crop to climate change. Agronomy for Sustainable Development, 33(1), 63-79. doi:10.1007/s13593-012-0108-7
Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Nasrulhaq Boyce, A. (2016). Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review. Molecules, 21(5). doi:10.3390/molecules21050573
Wang, M. C., & Yang, C. H. (2003). Type of fertilizer applied to a paddy-upland rotation affects selected soil quality attributes. Geoderma, 114(1-2), 93-108. doi:10.1016/S0016-7061(02)00356-7
Watson, C. A., Atkinson, D., Gosling, P., Jackson, L. R., & Rayns, F. W. (2002). Managing soil fertility in organic farming systems. Soil Use and Management, 18(3), 239-247. doi:10.1079/sum2002131
Xiong, W., Holman, I. P., You, L., Yang, J., & Wu, W. (2013). Impacts of observed growing-season warming trends since 1980 on crop yields in China. Regional Environmental Change, 14(1), 7-16. doi:10.1007/s10113-013-0418-6
Yang, X., Li, P., Zhang, S., Sun, B., & Xinping, C. (2011). Long-term-fertilization effects on soil organic carbon, physical properties, and wheat yield of a loess soil. Journal of Plant Nutrition and Soil Science, 174(5), 775-784. doi:10.1002/jpln.201000134
Zhou, W., Lv, T. F., Chen, Y., Westby, A. P., & Ren, W. J. (2014). Soil Physicochemical and Biological Properties of Paddy-Upland Rotation: A Review. Scientific World Journal. doi:Artn 85635210.1155/2014/856352
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔