跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 12:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃盈蓁
研究生(外文):Ying-JhenHuang
論文名稱:開發具有鎂離子的新型複合傷口敷料:含體內外測試
論文名稱(外文):Development of Novel Composite Wound Dressings Containing Magnesium Ions: An In Vitro and In Vivo Study
指導教授:葉明龍葉明龍引用關係
指導教授(外文):Ming-Long Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:79
中文關鍵詞:鎂離子傷口敷料傷口癒合
外文關鍵詞:magnesium ionswound healingwound dressings
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
慢性傷口指未依照預期的時間癒合通常伴隨著慢性疾病,癒合時間長達四週以上,例如糖尿病足部潰瘍、壓瘡等。傳統的傷口敷料主要功能為覆蓋於傷口表面保護傷口,卻沒有主動癒合的功效,在治療傷口的效果有限且未能滿足現今需求,開發具有主動癒合的先進敷料是刻不容緩。本篇研究將開發具有生物活性之金屬離子濺鍍於高分子材料聚丙烯(Polypropylene, PP)以促進傷口癒合能力的敷料,透過一系列的物化試驗、細胞實驗、動物實驗與微生物試驗,完成傷口敷料上市前的製程參數與功效的確認。研究顯示鎂具生物可吸收降解,其離子更有促細胞增生、分化、遷移與膠原蛋白生成等功效,近幾年已被廣泛應用於生醫材料的開發上,但目前市場上卻沒有使用於傷口敷料的相關應用,所以衍生出將鎂離子與高分子材料結合成為新一代的新型複合傷口敷料。
此研究中實驗組別分成對照組(無濺鍍金屬離子)、含鎂離子敷料與含銀鎂離子敷料,在材料的物化試驗中證明金屬離子成功濺鍍於材料表面且能夠有效釋放,且其疏水特性不易沾黏傷口組織;在細胞實驗方面進行細胞遷移與細胞毒性試驗,發現含鎂離子和含銀鎂離子敷料能夠加快小鼠纖維母細胞(NIH-3T3)爬行速度與對照組相比達顯著性的差異,且對於人類臍靜脈內皮細胞(HUVECs)無毒性;在動物實驗分成兩組大鼠傷口模型(每組6隻),分別為大鼠切割傷口模型 (急性傷口)與糖尿病鼠傷口模型(慢性傷口),在實驗期間每兩天更換一次敷料並拍照紀錄傷口大小,於第九天將大鼠犧牲取下傷口組織進行病理切片染色分析,包含蘇木精-伊紅染色(hematoxylin and eosin stain, H&E stain)觀察組織結構其上皮生長情形,與免疫組織化學染色(immunohistochemistry, IHC)觀察新生角質細胞數量(Ki67 marker)與血管內皮再生面積(CD31 marker)。在急性傷口實驗結果發現含鎂離子敷料其上皮化程度、新生角質細胞數量和血管內皮細胞面積,與對照組相比皆達顯著性差異有較好的癒合效果;而慢性傷口是透過餵食4週60 %高脂飼料(High fat diets, HFD)並注射35 mg/kg低劑量的鏈脲佐菌(Streptozotocin, STZ)誘發成糖尿病鼠,實驗結果發現同時具有兩種金屬離子的含銀鎂離子敷料,其在上皮化程度和血管內皮細胞面積與對照組相比達顯著性差異,對於糖尿病鼠傷口有較好的癒合效果,於抑菌試驗中對大腸桿菌的抑菌率達到40%。從所述的結果表明,含有鎂離子的新型複合傷口敷料具有治療傷口的潛力。
Chronic wounds do not heal as expected, with healing times longer than four weeks, often accompanied by chronic diseases such as diabetic foot ulcers and pressure ulcers. The traditional wound dressing function is to cover the wound surface to protect the wound, but it does not have the effect of active healing. The effect of treating wounds is limited and cannot meet their current needs. It is urgent to develop advanced dressings with active healing. This research develops a dressing with bioactive metal ion sputtered on polypropylene (PP) to promote wound healing. Through a series of physicochemical tests, in vitro, in vivo and microbiological tests, parameters and confirmation effects are found. Magnesium used in this study is bioabsorbable and degradable, and its ions are found could promote cell proliferation, differentiation, migration, and collagen deposition. So far, magnesium ion coated wound dressings have been investigated. So we developed novel composite wound dressings combining magnesium ions on polymer dressing materials.
In this study, the experimental group was divided into a control group (without sputtered metal ions), a dressing containing magnesium ions, and a dressing containing silver-magnesium ions. In the physiochemical test of the material, it was proved that metal ions were successfully sputtered on the surface of the material and could be effectively released, and its hydrophobic property was not easy to stick to the wound tissue; in vitro, cell migration and cytotoxicity tests were performed and it was found that magnesium ions and silver-magnesium ions dressings can promote NIH-3T3 migration and have significant differences compared to the control group, and have no toxicity to HUVECs; in vivo, the rat 1-cm open wound model was divided into two groups (6 rats in each group), a normal rat wound model (acute wound) and a diabetic rat wound model (chronic wound). Dressings were replaced every two days during the experiment and photos were taken to record the wound size. On day 9, the rats were sacrificed and the wound tissue was removed for pathological analysis. Hematoxylin and eosin stain (H&E stain) was used to observe the epithelial growth of the tissue structure, and immunohistochemistry (IHC) was used to observe the number of keratinocytes (Ki67 marker) and vascular endothelial regeneration area (CD31 marker).
In acute wounds, it was found that the dressing containing magnesium ions, whose percentage of re-epithelialization, the number of keratinocytes, and the area of ​​vascular endothelial cells, had significant differences compared to the control group and had better healing effects; chronic wounds were induced into diabetic rats by feeding 60% High fat diets (HFD) for 4 weeks and injecting Streptozotocin (STZ) at a low dose of 35 mg/kg. It was found that the silver-magnesium ions dressing with two kinds of metal ions, the percentage of re-epithelialization and the area of ​​vascular endothelial cells, had significant differences compared with the control group, and had better healing effects on chronic wounds. The bacteriostatic activity of the dressing in E. coli was 40%.
In summary, novel composite wound dressings containing magnesium ions have the potential to promote wound healing.
中文摘要 I
Abstract III
誌謝 V
Table of Contents VII
List of Tables X
List of Figures XI
Chapter 1: Introduction 1
1.1 Wound dressing 1
1.2 The structure of human skin 2
1.2.1 Epidermis layer 3
1.2.2 Dermis layer 5
1.2.3 Hypodermis layer 5
1.3 Stage of skin wound healing 6
1.3.1 Hemostasis phase 6
1.3.2 Inflammatory phase 6
1.3.3 Proliferation phase 7
1.3.4 Remodeling phase 7
1.3.5 Wound type 9
1.4The wound healing of active ions background-Mg2 + and Ag + 11
1.5 Motivation and aims of the research 12
Chapter 2: Material and Methods 13
2.1 Flow chart of experiment 13
2.2 Experimental materials 14
2.3 Experimental equipment 15
2.4 Physicochemical properties 16
2.4.1 Immersion test 16
2.4.2 Micrographs 16
2.4.3 Surface wettability 16
2.5 In vitro tests 17
2.5.1 Cell culture 17
2.5.2 Cytotoxicity assay 17
2.5.3 Cell migration 19
2.6 In vivo tests 20
2.6.1 Acute wound model 20
2.6.2 Chronic wound model 21
2.7 Antimicrobial assay 30
Chapter 3: Results and discussion 32
3.1 Physicochemical properties 32
3.1.1 Immersion test 32
3.1.2 Micrographs 35
3.1.3 Surface wettability 37
3.2 In vitro tests 38
3.2.1 Cytotoxicity assay 38
3.2.2 Cell migration 43
3.3 In vivo tests 45
3.3.1 Pre-test for dose-dependent parameters 45
3.3.2 Acute wound model 46
3.3.3 Chronic wound model 57
3.4 Antimicrobial 70
Chapter 4: Conclusion 72
Chapter 5: Future work 74
References 75
1. Jayakumar, R., Prabaharan, M., Sudheesh Kumar, P.T., Nair, S.V., and Tamura, H., Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 2011. 29(3): p. 322-337.
2. Morgado, P.I., Lisboa, P.F., Ribeiro, M.P., Miguel, S.P., Simões, P.C., Correia, I.J., and Ana, A.-R., Poly(vinyl alcohol)/chitosan asymmetrical membranes: highly controlled morphology toward the ideal wound dressing. Journal of Membrane Science, 2014. 469: p. 262-271.
3. Dhivya, S., Padma, V.V., and Santhini, E., Wound dressings - a review. BioMedicine, 2015. 5(4): p. 22-22.
4. Boer, M., Duchnik, E., Maleszka, R., and Marchlewicz, M., Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Postepy Dermatol Alergol, 2016. 33(1): p. 1-5.
5. Betts, J.G., Young, K.A., Wise, J.A., Johnson, E., Poe, B., Kruse, D.H., Korol, O., Johnson, J.E., Womble, M., and DeSaix, P., Anatomy and Physiology. Vol. 5.1 Layers of the Skin. 2013, Houston, Texas: OpenStax.
6. Honari, G. and Maibach, H., Chapter 1 - Skin Structure and Function, in Applied Dermatotoxicology, Maibach, H. and Honari, G., Editors. 2014, Academic Press: Boston. p. 1-10.
7. Yousef, H., Alhajj, M., and Sharma, S., Anatomy, Skin (Integument), Epidermis, in StatPearls. 2019, StatPearls Publishing LLC.: Treasure Island (FL).
8. Freeman, S.C. and Sonthalia, S., Histology, Keratohyalin Granules, in StatPearls. 2019, StatPearls Publishing LLC.: Treasure Island (FL).
9. Brown, T.M. and Krishnamurthy, K., Histology, Dermis, in StatPearls. 2019, StatPearls Publishing LLC.: Treasure Island (FL).
10. Qing, C., The molecular biology in wound healing & non-healing wound. Chinese Journal of Traumatology, 2017. 20(4): p. 189-193.
11. Sun, B.K., Siprashvili, Z., and Khavari, P.A., Advances in skin grafting and treatment of cutaneous wounds. Science, 2014. 346(6212): p. 941.
12. Takeuchi, O. and Akira, S., Pattern recognition receptors and inflammation. Cell, 2010. 140(6): p. 805-820.
13. Hwang, D.L., Latus, L.J., and Lev-Ran, A., Effects of platelet-contained growth factors (PDGF, EGF, IGF-I, and TGF-beta) on DNA synthesis in porcine aortic smooth muscle cells in culture. Experimental Cell Research, 1992. 200(2): p. 358-60.
14. Jabbour, H.N., Sales, K.J., Catalano, R.D., and Norman, J.E., Inflammatory pathways in female reproductive health and disease. Reproduction, 2009. 138(6): p. 903-19.
15. Tidball, J.G., Inflammatory processes in muscle injury and repair. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 2005. 288(2): p. R345-53.
16. Prame Kumar, K., Nicholls, A.J., and Wong, C.H.Y., Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell and Tissue Research, 2018. 371(3): p. 551-565.
17. Hattori, N., Mochizuki, S., Kishi, K., Nakajima, T., Takaishi, H., D'Armiento, J., and Okada, Y., MMP-13 plays a role in keratinocyte migration, angiogenesis, and contraction in mouse skin wound healing. The American Journal of Pathology, 2009. 175(2): p. 533-546.
18. Landén, N.X., Li, D., and Ståhle, M., Transition from inflammation to proliferation: a critical step during wound healing. Cellular and Molecular Life Sciences, 2016. 73(20): p. 3861-3885.
19. Etheredge, L., Kane, B.P., and Hassell, J.R., The effect of growth factor signaling on keratocytes in vitro and its relationship to the phases of stromal wound repair. Investigative Ophthalmology & Visual Science, 2009. 50(7): p. 3128-3136.
20. Hoshino, M., Takahashi, M., and Aoike, N., Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. The Journal of Allergy and Clinical Immunology, 2001. 107(2): p. 295-301.
21. Xue, M. and Jackson, C.J., Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Advances in Wound Care, 2015. 4(3): p. 119-136.
22. Reinke, J.M. and Sorg, H., Wound repair and regeneration. European Surgical Research, 2012. 49(1): p. 35-43.
23. Robson, M.C., Steed, D.L., and Franz, M.G., Wound healing: biologic features and approaches to maximize healing trajectories. Current Problems in Surgery, 2001. 38(2): p. 72-140.
24. Velnar, T., Bailey, T., and Smrkolj, V., The wound healing process: an overview of the cellular and molecular mechanisms. The Journal of International Medical Research, 2009. 37(5): p. 1528-42.
25. Azzimonti, B., Sabbatini, M., Rimondini, L., and Cannas, M., 4 - Manipulating the healing response, in Wound Healing Biomaterials, Ågren, M.S., Editor. 2016, Woodhead Publishing. p. 101-116.
26. Schreml, S., Szeimies, R.M., Prantl, L., Karrer, S., Landthaler, M., and Babilas, P., Oxygen in acute and chronic wound healing. British Journal of Dermatology, 2010. 163(2): p. 257-268.
27. Frykberg, R.G. and Banks, J., Challenges in the treatment of chronic wounds. Advances In Wound Care, 2015. 4(9): p. 560-582.
28. Turner, N.J. and Badylak, S.F., The use of biologic scaffolds in the treatment of chronic nonhealing wounds. Advances in Wound Care, 2015. 4(8): p. 490-500.
29. Lin, D.J., Hung, F.Y., Yeh, M.L., and Lui, T.S., Microstructure-modified biodegradable magnesium alloy for promoting cytocompatibility and wound healing in vitro. Journal of Materials Science, 2015. 26(10): p. 248.
30. Heublein, B., Rohde, R., Kaese, V., Niemeyer, M., Hartung, W., and Haverich, A., Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart (British Cardiac Society), 2003. 89(6): p. 651-656.
31. Mao, L., Shen, L., Chen, J., Zhang, X., Kwak, M., Wu, Y., Fan, R., Zhang, L., Pei, J., Yuan, G., Song, C., Ge, J., and Ding, W., A promising biodegradable magnesium alloy suitable for clinical vascular stent application. Scientific Reports, 2017. 7: p. 46343-46343.
32. Witte, F., The history of biodegradable magnesium implants: a review. Acta Biomaterialia, 2010. 6(5): p. 1680-1692.
33. Li, B., Cao, H., Zhao, Y., Cheng, M., Qin, H., Cheng, T., Hu, Y., Zhang, X., and Liu, X., In vitro and in vivo responses of macrophages to magnesium-doped titanium. Scientific Reports, 2017. 7: p. 42707.
34. Maier, J.A., Bernardini, D., Rayssiguier, Y., and Mazur, A., High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochimica Biophysica Acta, 2004. 1689(1): p. 6-12.
35. Razzaghi, R., Pidar, F., Momen-Heravi, M., Bahmani, F., Akbari, H., and Asemi, Z., Magnesium supplementation and the effects on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Biological Trace Element Research, 2018. 181(2): p. 207-215.
36. Sasaki, Y., Sathi, G.A., and Yamamoto, O., Wound healing effect of bioactive ion released from Mg-smectite. Materials Science & Engineering C 2017. 77: p. 52-57.
37. Boersema, G.S.A., Grotenhuis, N., Bayon, Y., Lange, J.F., and Bastiaansen-Jenniskens, Y.M., The effect of biomaterials used for tissue regeneration purposes on polarization of macrophages. BioResearch Open Access, 2016. 5(1): p. 6-14.
38. Simoes, D., Miguel, S.P., Ribeiro, M.P., Coutinho, P., Mendonca, A.G., and Correia, I.J., Recent advances on antimicrobial wound dressing: a review. European Journal of Pharmaceutics and Biopharmaceutics 2018. 127: p. 130-141.
39. Kędziora, A., Speruda, M., Krzyżewska, E., Rybka, J., Łukowiak, A., and Bugla-Płoskońska, G., Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. International Journal of Molecular Sciences, 2018. 19(2): p. 444.
40. Scholzen, T. and Gerdes, J., The Ki-67 protein: from the known and the unknown. Journal of Cellular Physiology, 2000. 182(3): p. 311-22.
41. Sun, X. and Kaufman, P.D., Ki-67: more than a proliferation marker. Chromosoma, 2018. 127(2): p. 175-186.
42. Coger, V., Million, N., Rehbock, C., Sures, B., Nachev, M., Barcikowski, S., Wistuba, N., Strauss, S., and Vogt, P.M., Tissue concentrations of zinc, iron, copper, and magnesium during the phases of full thickness wound healing in a rodent model. Biological Trace Element Research, 2018.
43. Wong, C.W., Wiedle, G., Ballestrem, C., Wehrle-Haller, B., Etteldorf, S., Bruckner, M., Engelhardt, B., Gisler, R.H., and Imhof, B.A., PECAM-1/CD31 trans-homophilic binding at the intercellular junctions is independent of its cytoplasmic domain; evidence for heterophilic interaction with integrin alphavbeta3 in Cis. Molecular Biology of The Cell, 2000. 11(9): p. 3109-3121.
44. Hazan, R., Que, Y.-A., Maura, D., and Rahme, L.G., A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiology, 2012. 12: p. 259-259.
45. Kamaruzzaman, N.F., Tan, L.P., Hamdan, R.H., Choong, S.S., Wong, W.K., Gibson, A.J., Chivu, A., and Pina, M.d.F., Antimicrobial polymers: The potential replacement of existing antibiotics? International Journal of Molecular Sciences, 2019. 20(11): p. 2747.
46. Szweda, P., Gorczyca, G., and Tylingo, R., Comparison of antimicrobial activity of selected, commercially available wound dressing materials. Journal of Wound Care, 2018. 27(5): p. 320-326.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top