|
1. Jayakumar, R., Prabaharan, M., Sudheesh Kumar, P.T., Nair, S.V., and Tamura, H., Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 2011. 29(3): p. 322-337. 2. Morgado, P.I., Lisboa, P.F., Ribeiro, M.P., Miguel, S.P., Simões, P.C., Correia, I.J., and Ana, A.-R., Poly(vinyl alcohol)/chitosan asymmetrical membranes: highly controlled morphology toward the ideal wound dressing. Journal of Membrane Science, 2014. 469: p. 262-271. 3. Dhivya, S., Padma, V.V., and Santhini, E., Wound dressings - a review. BioMedicine, 2015. 5(4): p. 22-22. 4. Boer, M., Duchnik, E., Maleszka, R., and Marchlewicz, M., Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Postepy Dermatol Alergol, 2016. 33(1): p. 1-5. 5. Betts, J.G., Young, K.A., Wise, J.A., Johnson, E., Poe, B., Kruse, D.H., Korol, O., Johnson, J.E., Womble, M., and DeSaix, P., Anatomy and Physiology. Vol. 5.1 Layers of the Skin. 2013, Houston, Texas: OpenStax. 6. Honari, G. and Maibach, H., Chapter 1 - Skin Structure and Function, in Applied Dermatotoxicology, Maibach, H. and Honari, G., Editors. 2014, Academic Press: Boston. p. 1-10. 7. Yousef, H., Alhajj, M., and Sharma, S., Anatomy, Skin (Integument), Epidermis, in StatPearls. 2019, StatPearls Publishing LLC.: Treasure Island (FL). 8. Freeman, S.C. and Sonthalia, S., Histology, Keratohyalin Granules, in StatPearls. 2019, StatPearls Publishing LLC.: Treasure Island (FL). 9. Brown, T.M. and Krishnamurthy, K., Histology, Dermis, in StatPearls. 2019, StatPearls Publishing LLC.: Treasure Island (FL). 10. Qing, C., The molecular biology in wound healing & non-healing wound. Chinese Journal of Traumatology, 2017. 20(4): p. 189-193. 11. Sun, B.K., Siprashvili, Z., and Khavari, P.A., Advances in skin grafting and treatment of cutaneous wounds. Science, 2014. 346(6212): p. 941. 12. Takeuchi, O. and Akira, S., Pattern recognition receptors and inflammation. Cell, 2010. 140(6): p. 805-820. 13. Hwang, D.L., Latus, L.J., and Lev-Ran, A., Effects of platelet-contained growth factors (PDGF, EGF, IGF-I, and TGF-beta) on DNA synthesis in porcine aortic smooth muscle cells in culture. Experimental Cell Research, 1992. 200(2): p. 358-60. 14. Jabbour, H.N., Sales, K.J., Catalano, R.D., and Norman, J.E., Inflammatory pathways in female reproductive health and disease. Reproduction, 2009. 138(6): p. 903-19. 15. Tidball, J.G., Inflammatory processes in muscle injury and repair. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 2005. 288(2): p. R345-53. 16. Prame Kumar, K., Nicholls, A.J., and Wong, C.H.Y., Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell and Tissue Research, 2018. 371(3): p. 551-565. 17. Hattori, N., Mochizuki, S., Kishi, K., Nakajima, T., Takaishi, H., D'Armiento, J., and Okada, Y., MMP-13 plays a role in keratinocyte migration, angiogenesis, and contraction in mouse skin wound healing. The American Journal of Pathology, 2009. 175(2): p. 533-546. 18. Landén, N.X., Li, D., and Ståhle, M., Transition from inflammation to proliferation: a critical step during wound healing. Cellular and Molecular Life Sciences, 2016. 73(20): p. 3861-3885. 19. Etheredge, L., Kane, B.P., and Hassell, J.R., The effect of growth factor signaling on keratocytes in vitro and its relationship to the phases of stromal wound repair. Investigative Ophthalmology & Visual Science, 2009. 50(7): p. 3128-3136. 20. Hoshino, M., Takahashi, M., and Aoike, N., Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. The Journal of Allergy and Clinical Immunology, 2001. 107(2): p. 295-301. 21. Xue, M. and Jackson, C.J., Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Advances in Wound Care, 2015. 4(3): p. 119-136. 22. Reinke, J.M. and Sorg, H., Wound repair and regeneration. European Surgical Research, 2012. 49(1): p. 35-43. 23. Robson, M.C., Steed, D.L., and Franz, M.G., Wound healing: biologic features and approaches to maximize healing trajectories. Current Problems in Surgery, 2001. 38(2): p. 72-140. 24. Velnar, T., Bailey, T., and Smrkolj, V., The wound healing process: an overview of the cellular and molecular mechanisms. The Journal of International Medical Research, 2009. 37(5): p. 1528-42. 25. Azzimonti, B., Sabbatini, M., Rimondini, L., and Cannas, M., 4 - Manipulating the healing response, in Wound Healing Biomaterials, Ågren, M.S., Editor. 2016, Woodhead Publishing. p. 101-116. 26. Schreml, S., Szeimies, R.M., Prantl, L., Karrer, S., Landthaler, M., and Babilas, P., Oxygen in acute and chronic wound healing. British Journal of Dermatology, 2010. 163(2): p. 257-268. 27. Frykberg, R.G. and Banks, J., Challenges in the treatment of chronic wounds. Advances In Wound Care, 2015. 4(9): p. 560-582. 28. Turner, N.J. and Badylak, S.F., The use of biologic scaffolds in the treatment of chronic nonhealing wounds. Advances in Wound Care, 2015. 4(8): p. 490-500. 29. Lin, D.J., Hung, F.Y., Yeh, M.L., and Lui, T.S., Microstructure-modified biodegradable magnesium alloy for promoting cytocompatibility and wound healing in vitro. Journal of Materials Science, 2015. 26(10): p. 248. 30. Heublein, B., Rohde, R., Kaese, V., Niemeyer, M., Hartung, W., and Haverich, A., Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart (British Cardiac Society), 2003. 89(6): p. 651-656. 31. Mao, L., Shen, L., Chen, J., Zhang, X., Kwak, M., Wu, Y., Fan, R., Zhang, L., Pei, J., Yuan, G., Song, C., Ge, J., and Ding, W., A promising biodegradable magnesium alloy suitable for clinical vascular stent application. Scientific Reports, 2017. 7: p. 46343-46343. 32. Witte, F., The history of biodegradable magnesium implants: a review. Acta Biomaterialia, 2010. 6(5): p. 1680-1692. 33. Li, B., Cao, H., Zhao, Y., Cheng, M., Qin, H., Cheng, T., Hu, Y., Zhang, X., and Liu, X., In vitro and in vivo responses of macrophages to magnesium-doped titanium. Scientific Reports, 2017. 7: p. 42707. 34. Maier, J.A., Bernardini, D., Rayssiguier, Y., and Mazur, A., High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochimica Biophysica Acta, 2004. 1689(1): p. 6-12. 35. Razzaghi, R., Pidar, F., Momen-Heravi, M., Bahmani, F., Akbari, H., and Asemi, Z., Magnesium supplementation and the effects on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Biological Trace Element Research, 2018. 181(2): p. 207-215. 36. Sasaki, Y., Sathi, G.A., and Yamamoto, O., Wound healing effect of bioactive ion released from Mg-smectite. Materials Science & Engineering C 2017. 77: p. 52-57. 37. Boersema, G.S.A., Grotenhuis, N., Bayon, Y., Lange, J.F., and Bastiaansen-Jenniskens, Y.M., The effect of biomaterials used for tissue regeneration purposes on polarization of macrophages. BioResearch Open Access, 2016. 5(1): p. 6-14. 38. Simoes, D., Miguel, S.P., Ribeiro, M.P., Coutinho, P., Mendonca, A.G., and Correia, I.J., Recent advances on antimicrobial wound dressing: a review. European Journal of Pharmaceutics and Biopharmaceutics 2018. 127: p. 130-141. 39. Kędziora, A., Speruda, M., Krzyżewska, E., Rybka, J., Łukowiak, A., and Bugla-Płoskońska, G., Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. International Journal of Molecular Sciences, 2018. 19(2): p. 444. 40. Scholzen, T. and Gerdes, J., The Ki-67 protein: from the known and the unknown. Journal of Cellular Physiology, 2000. 182(3): p. 311-22. 41. Sun, X. and Kaufman, P.D., Ki-67: more than a proliferation marker. Chromosoma, 2018. 127(2): p. 175-186. 42. Coger, V., Million, N., Rehbock, C., Sures, B., Nachev, M., Barcikowski, S., Wistuba, N., Strauss, S., and Vogt, P.M., Tissue concentrations of zinc, iron, copper, and magnesium during the phases of full thickness wound healing in a rodent model. Biological Trace Element Research, 2018. 43. Wong, C.W., Wiedle, G., Ballestrem, C., Wehrle-Haller, B., Etteldorf, S., Bruckner, M., Engelhardt, B., Gisler, R.H., and Imhof, B.A., PECAM-1/CD31 trans-homophilic binding at the intercellular junctions is independent of its cytoplasmic domain; evidence for heterophilic interaction with integrin alphavbeta3 in Cis. Molecular Biology of The Cell, 2000. 11(9): p. 3109-3121. 44. Hazan, R., Que, Y.-A., Maura, D., and Rahme, L.G., A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiology, 2012. 12: p. 259-259. 45. Kamaruzzaman, N.F., Tan, L.P., Hamdan, R.H., Choong, S.S., Wong, W.K., Gibson, A.J., Chivu, A., and Pina, M.d.F., Antimicrobial polymers: The potential replacement of existing antibiotics? International Journal of Molecular Sciences, 2019. 20(11): p. 2747. 46. Szweda, P., Gorczyca, G., and Tylingo, R., Comparison of antimicrobial activity of selected, commercially available wound dressing materials. Journal of Wound Care, 2018. 27(5): p. 320-326.
|