(3.236.122.9) 您好!臺灣時間:2021/05/14 06:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:程品軒
研究生(外文):Pin-HsuanCheng
論文名稱:研究低緯度之電離層移行擾動與開發自動判別演算法
論文名稱(外文):Study of Medium-Scale Traveling Ionospheric Disturbances in Low-Latitude Ionosphere Using an Automatic Algorithm
指導教授:林建宏林建宏引用關係
指導教授(外文):Chien-Hung Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:地球科學系
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:122
中文關鍵詞:低緯度中尺度電離層移行擾動支援向量機大氣重力波散塊E層
外文關鍵詞:ow-latitude MSTIDsSupport Vector MachineAtmospheric Gravity WavesSporadic E layers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究並統計低緯度電離層赤道異常區之中尺度電離層移行擾動(Medium–Scale Traveling Ionospheric Disturbances, MSTIDs),以及赤道電漿泡(Equatorial Plasma Bubbles, EPBs)。吾人利用中央氣象局餘100個GPS接收站的電離層全電子含量(Total electron content, TEC)資料進行分析,為了要區別以及分類MSTIDs和EPBs,吾人應用三維快速傅立葉轉換和支援向量機演算法來進行自動判別。判別後之統計結果與福爾摩沙衛星三號(Constellation Observing System for Meteorology, Ionosphere, and Climate, COSMIC)演星資料以及高解析度全球大氣耦合模式(Whole Atmosphere Community Climate Model, WACCM)比較討論其季節性特徵以及發生機制,可以得到以下結論:第一,往南向傳的MSTIDs於冬季以及春季時,幾乎於所有的白天到午夜都可以觀測到,且其主要以正南向以及東南向為主;相較而言,於夏季,南向的MSTIDs,在夜晚九點到半夜五點好發,其主要從日本地區傳遞過來且以西南向為主。第二,北向傳的MSTIDs,較多於春季以及夏季的中午至半夜被觀測到,且在春季有著第二波的發生高峰,其可能的發生機制為大氣重力波。第三,赤道電漿泡於四季的發生機率依序為,春季大於秋季,再來是夏季,最後是冬季。
This study investigates the medium–scale traveling ionospheric disturbances (MSTIDs) statistically at the low–latitude equatorial ionization anomaly (EIA) region in the northern hemisphere. I apply both three–dimensional fast Fourier transform (3D–FFT) and support vector machine (SVM) to identify MSTID from other waves or irregularity features, such as equatorial plasma bubble (EPB) from TEC observations by a network of ground-based GNSS receivers around Taiwan. Statistical results together with additional observations from radio occultation of FORMOSAT-3/COSMIC data and neutral atmosphere perturbations from the high–resolution Whole Atmosphere Community Climate Model (WACCM) indicate the following characteristics. First, the southward (equatorward) MSTIDs are observed almost every day from 08:00 to 21:00 LT during Spring and Winter. At midnight, southward MSTIDs are more discernible in Summer and they are majorly propagating from Japan at mid-latitude region. Second, northward (poleward) MSTIDs are more frequently detected among 12:00 to 21:00 LT in Spring and Summer with secondary occurrence peak during day of year 100 to 140, which is likely connected to the atmospheric gravity waves (AGWs).
摘要 I
ABSTRACT II
ACKNOWLEDGEMENT III
LIST OF TABLES VII
LIST OF FIGURES VIII
NOMENCLATURE XIV
CHAPTER 1 INTRODUCTION 1
1.1 IONOSPHERE 1
1.2 PLASMA DRIFT 5
1.3 EQUATORIAL FOUNTAIN EFFECT 7
1.4 IONOSPHERIC IRREGULARITIES 12
1.5 GENERATION MECHANISM OF MSTID 19
1.6 LITERATURE REVIEW 28
1.7 MOTIVATION 33
CHAPTER 2 METHODOLOGY 34
2.1 PRINCIPLE OF GNSS OBSERVATION 34
2.2 HIGH-PASS FILTER 37
2.3 THREE-DIMENSIONAL FAST FOURIER TRANSFORM 39
2.4 SUPPORT VECTOR MACHINES 43
2.5 HIGH-RESOLUTION WHOLE ATMOSPHERE COMMUNITY CLIMATE MODEL 50
2.6 FORMOSAT-3/COSMIC RADIO OCCULTATION 53
CHAPTER 3 DATA ANALYSIS PROCESS 58
3.1 DATA FLOW DIAGRAM 58
3.2 GNSS DATA PROCESS 60
3.3 STEP DESCRIPTION OF THREE-DIMENSIONAL FAST FOURIER TRANSFORM 62
3.4 OPERATION OF SUPPORT VECTOR MACHINE 67
3.5 GRAVITY WAVES SIMULATION BY HIGH-RESOLUTION WHOLE ATMOSPHERE COMMUNITY CLIMATE MODEL 73
3.6 SPORADIC E LAYER OBSERVATION BY FORMOSAT-3/COSMIC 75
CHAPTER 4 RESULTS AND DISCUSSIONS 78
4.1 RESULT OF EPBS OBSERVATION 79
4.2 RESULT OF MSTIDS OBSERVATION 82
4.3 SPORADIC E LAYER AND MSTIDS 97
4.4 GRAVITY WAVES AND MSTIDS 103
CHAPTER 5 CONCLUSION 114
REFERENCE 117
Arras, C., J. Wickert, G. Beyerle, S. Heise, T. Schmidt, and C. Jacobi (2008), A global climatology of ionospheric irregularities derived from GPS radio occultation, Geophys. Res. Lett., 35, L14809, doi:10.1029/2008GL034158.
Arras, C., C. Jacobi, and J. Wickert (2009): Semidiurnal tidal signature in sporadic E occurrence rates derived from GPS radio occultation measurements at higher midlatitudes, Ann. Geophys., 27, 2555–2563.
Behnke, R. (1979), F layer height bands in the nocturnal ionosphere over Arecibo, J. Geophys. Res., 84, 974–978, doi:10.1029/JA084iA03p00974.
Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2(2), 121-167.
Chou, M. Y., Lin, C. C., Yue, J., Chang, L. C., Tsai, H. F., & Chen, C. H. (2017). Medium‐scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophysical Research Letters, 44(15), 7569-7577.
Cooley, James W.; Tukey, John W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation. 19 (90): 297–301. doi:10.1090/S0025-5718-1965-0178586-1. ISSN 0025-5718.
Cosgrove, R. B., and R. T. Tsunoda (2004), Instability of the E‐F coupled nighttime midlatitude ionosphere, J. Geophys. Res., 109, A04305, doi:10.1029/2003JA010243.
Danielson, Gordon C.; Lanczos, Cornelius (1942). Some improvements in practical Fourier analysis and their application to x-ray scattering from liquids. Journal of the Franklin Institute. 233 (4): 365–380.
Ding, F., W. Wan, G. Xu, T. Yu, G. Yang, and J. Wang (2001), Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China, J. Geophys. Res., 116, A09327, doi:10.1029/2011JA016545.
Farley, D. T., Bonelli, E., Fejer, B. G., and Larsen, M. F. (1986). The prereversal enhancement of the zonal electric field in the equatorial ionosphere. J. Geophys. Res. 91,13,723.
Gentile, L. C., Burke, W. J., & Rich, F. J. (2006). A climatology of equatorial plasma bubbles from DMSP 1989–2004. Radio Science, 41(5).
Hernández-ajares, M., J. M. Juan, J. Sanz, and A. Aragón-Àngel(2012), Propagation of medium scale traveling ionospheric disturbances at different latitudes and solor cycle conditions, Radio Sci.,47, RS0K05, doi:10.1029/2011RS004951.
Hines, C. O. (1960), Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441
Hunsucker RD (1982) Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Rev Geophys Space Phys 20(2):293–315. doi:10.1029/RG020i002p00293
Kotake, N., Y. Otsuka, T. Tsugawa, T. Ogawa, and A. Saito (2006), Climatological study of GPS total electron content variations caused by medium‐scale traveling ionospheric disturbances, J. Geophys. Res., 111, A04306, doi:10.1029/2005JA011418.
Kotake, N., Otsuka, Y., Ogawa, T., Tsugawa, T., & Saito, A. (2007). Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth, planets and space, 59(2), 95-102.
Lee, C. C., Y. A. Liou, Y. Otsuka, F. D. Chu, T. K. Yeh, K. Hoshinoo, and K. Matunaga (2008), Nighttime medium‐scale traveling ionospheric disturbances detected by network GPS receivers in Taiwan, J. Geophys. Res., 113, A12316, doi:10.1029/2008JA013250.
Liu, H. L., McInerney, J. M., Santos, S., Lauritzen, P. H., Taylor, M. A., & Pedatella, N. M. (2014). Gravity waves simulated by high‐resolution whole atmosphere community climate model. Geophysical Research Letters, 41(24), 9106-9112.
MacDougall, J., M. A. Abdu, I. Batista, R. Buriti, A. F. Medeiros, P. T. Jayachandran, and G. Borba (2011), Spaced transmitter measurements of medium scale traveling ionospheric disturbances near the equator, Geophys. Res. Lett., 38, L16806, doi:10.1029/2011GL048598.
Martinis, C., Baumgardner, J., Mendillo, M., Wroten, J., MacDonald, T., Kosch, M., Lazzarin, M., & Umbriaco, G. (2019). First conjugate observations of medium‐scale traveling ionospheric disturbances (MSTIDs) in the Europe‐Africa longitude sector. Journal of Geophysical Research: Space Physics, 124, 2213– 2222. https://doi.org/10.1029/2018JA026018
Matsuda, T. S., T. Nakamura, M. K. Ejiri, M. Tsutsumi, and K. Shiokawa (2014), New statistical analysis of the horizontal phase velocity distribution of gravity waves observed by airglow imaging, J. Geophys. Res. Atmos., 119, 9707– 9718, doi:10.1002/2014JD021543.
Narayanan, V. L., K. Shiokawa, Y. Otsuka, and S. Saito (2014), Airglow observations of nighttime medium-scale traveling ionospheric disturbances from Yonaguni: Statistical characteristics and iow-latitude limit, J. Geophys. Res. Spce Physics, 119,9268-9282, doi:1002/2014JA020368.
Otsuka, Y., K. Suzuki, S. Nakagawa, M. Nishioka, K. Shiokawa, and T. Tsugawa (2013), GPS observations of medium-scale traveling ionospheric disturbances over Europe, Ann. Geophys., 31,163-172,2013, doi:10.5194/angeo-31-163-2013.
Perkins, F. (1973), Spread F and ionospheric currents, J. Geophys. Res., 78, 218, doi:10.1029/JA078i001p00218.
Rajesh, P. K., J. Y. Liu, C. H. Lin, A. B. Chen, R. R. Hsu, C. H. Chen, and J. D. Huba (2016), Space‐based imaging of nighttime medium‐scale traveling ionospheric disturbances using FORMOSAT‐2/ISUAL 630.0 nm airglow observations, J. Geophys. Res. Space Physics, 121, 4769–4781, doi:10.1002/2015JA022334.
Saito, A., T. Iyemori, L. G. Blomberg, M. Yamamoto, and M. Takeda (1998), Conjugate observations of the mid‐latitude electric field fluctuations with the MU radar and the Freja satellite, J. Atmos. Sol. Terr. Phys., 60, 129–140.
Sun, L., J. Xu, W. Wang, W. Yuan, Q. Li, and C. Jiang (2016), A statistical analysis of equatorial plasma bubble structures based on an all‐sky airglow imager network in China, J. Geophys. Res. Space Physics, 121, 11,495– 11,517, doi:10.1002/2016JA022950.
Takeo, K. Shiokawa, H. Fujinami, Y. Otsuka, T. S. Matsuda, M. K. Ejiri, T. Nakamura, and M. Yamamoto (2017), Sixteen-year variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric waves in airglow images at Shigaraki, Japan, J. Geophys. Res. Spce Physics, 122, 7849-9088,2017, doi:10.1002/2017JA023919
Tsunoda, R. T. (2006), On the coupling of layer instabilities in the nighttime midlatitude ionosphere, J. Geophys. Res., 111, A11304, doi:10.1029/2006JA011630.
Tsugawa, T., N. Kotake, Y. Otsuka, and A. Saito (2006a), Medium‐scale traveling ionospheric disturbances observed by GPS receiver network in Japan: A short review, GPS Solutions, 11, 139– 144, doi:10.1007/s10291‐006‐0045‐5.
Tsugawa, T., Y. Otsuka, A. J. Coster, and A. Saito (2007), Medium‐scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America, Geophys. Res. Lett., 34, L22101, doi:10.1029/2007GL031663.
Vadas, S. L., & Fritts, D. C. (2009, January). Reconstruction of the gravity wave field from convective plumes via ray tracing. In Annales Geophysicae (Vol. 27, No. 1, pp. 147-177). Copernicus GmbH.
Yates, Frank (1937). The design and analysis of factorial experiments. Technical Communication No. 35 of the Commonwealth Bureau of Soils. 142 (3585): 90–92. Bibcode:1938Natur.142...90F. doi:10.1038/142090a0
Yokoyama, T., D. L. Hysell, Y. Otsuka, and M. Yamamoto (2009), Three-dimensional simulation of the coupled Perkins and Es-layer instabilities in the nighttime midlatitude ionosphere, J. Geophys. Res., 114, A03308, doi:10.1029/2008JA013789.
Yokoyama, T., Shinagawa, H., & Jin, H. (2014). Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three‐dimensional high‐resolution bubble model. Journal of Geophysical Research: Space Physics, 119(12), 10-474.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔