跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 21:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈昕緯
研究生(外文):Hsin-WeiShen
論文名稱:臺灣臺南地區大氣氣溶膠及雨水中碳、氮的環境地球化學之研究
論文名稱(外文):Environmental Geochemistry Studies of Carbon and Nitrogen for Aerosols and Rainwater in Tainan, Taiwan
指導教授:楊懷仁楊懷仁引用關係羅尚德
指導教授(外文):Huai-Jen YangShang-De Luo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:地球科學系
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:52
中文關鍵詞:氣溶膠雨水
外文關鍵詞:aerosolrainwatercarbonnitrogen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究測量於臺南市成功大學區域連續採樣之大氣與雨水中之氣溶膠的碳、氮元素,觀察隨時間之變化探討其對空氣品質變化的環境地球化學意義。碳、氮濃度的測量方法為以TOC/TN 分析儀進行高溫燃燒分析法,碳測量所採用的檢測法為非分散式紅外線檢測;氮測量則是使用化學發光法。所採樣之氣溶膠,通過抽氣過濾的方式,以幫浦抽入空氣經過兩層不同孔隙之玻璃纖維濾紙1.6 μm及0.7 μm後通入定量的蒸餾水中。每次採樣時間為一周。在樣本進入儀器量測之前,會將乾沉降樣本置入蒸餾水中震盪離心,分離出可溶相及不可溶相。觀察在不同粒徑下的氣溶膠以及可溶相和不可溶相之碳-氮比值分布情形。雨水樣本則採樣自然降雨後直接進入儀器測量。
結果顯示,1.6 μm氣溶膠樣本大氣中平均濃度為4.01 - 10.73 ppm,而0.7 μm氣溶膠樣本平均濃度為1.24 - 4.42 ppm。1.6 μm、0.7 μm及奈米氣溶膠之碳濃度分別為 39.63 - 112.99 ppb、33.75 - 98.67 ppb及20.07 - 51.05 ppb;而氮濃度則為5.77 - 21.32 ppb、6.31 - 32.99 ppb及3.88 - 22.39;碳-氮比值為 5.21 - 6.87、2.95 - 5.35及1.97 - 5.17。雨水中碳濃度為0.15 - 12.99 ppm,氮濃度為0.30 - 11.21 ppm,碳-氮比值為0.53 - 9.36。
氮主要富集於小粒徑的氣溶膠中,主要來源於汽機車排放氮氧化物廢氣形成之次生顆粒,而0.7 μm及奈米氣溶膠對於碳、氮濃度亦擁有不能忽視之貢獻。臺南地區之碳、氮濃度呈冬高夏低的趨勢,主要受到混合層高度及雨水移除效應的影響。氣溶膠之碳-氮比值主要受到次生顆粒所影響,而混合層高度、降雨頻率及風力皆會影響次生顆粒的生成能力。隨季風所帶來的氣團來源,也會造成氣溶膠組成有季節上的差異。
In this study, we measured the carbon and nitrogen concentrations in aerosols and rainwater collected at Cheng Kung University in south Taiwan and observed the changes over time to explore the changes of the air quality.
We separated aerosols with glass fiber filter papers into size ranges of 〉 1.6 μm, 1.6-0.7 μm and nano-particle. Using a TOC/TN analyzer, we measured the concentration of carbon and nitrogen, and then calculated the carbon-nitrogen ratio. The values of the carbon-nitrogen ratio were highly related to the secondary particular matter formed in aerosols. The generation of secondary particular matter is controlled by (1) emission source, (2) mixed layer depth, (3) precipitation and (4) residence time of aerosols.
The results showed that the concentrations of carbon in the 〉 1.6 μm, 1.6-0.7 μm and nano-particle fractions were in the ranges of 39.63 - 112.99 ppb, 33.75 - 98.67 ppb and 20.07 - 51.05 ppb, respectively, whereas those of nitrogen were 5.77 - 21.32 ppb, 6.31 - 32.99 ppb, and 3.88 - 22.39, respectively with carbon/nitrogen ratios of 5.21 - 6.87, 2.95 - 5.35 and 1.97 - 5.17, respectively.
Nitrogen was generally enriched in the secondary particular matter, which was mainly composed of nitrogen oxides from vehicles emission. The concentrations of carbon and nitrogen was higher in summer than in winter. This feature can be explained by the variation in the altitude of the mixed layer and the effects of monsoon. The nitrogen in the secondary particular matter is highly soluble; therefore, subjected to rainwater removal. High carbon/nitrogen ratios were caused by decreasing nitrogen oxides in atmosphere. Lower carbon/nitrogen ratios indicated more secondary particular matters in aerosols.
摘 要 ...............................I
ABSTRACT..............................II
致 謝 ..............................VI
目 錄 .............................VII
表 目 錄 ..............................IX
圖 目 錄 ...............................X
第一章 緒論 .......................1
1.1 氣溶膠 .......................1
1.2 氣溶膠的分類 .......................2
1.3氣溶膠的化學組成與來源 ...............4
1.4氣溶膠成份比值之環境意義 .......6
1.5 氣溶膠的循環路徑與傳播因子 .......9
1.6 研究動機 .........................12
第二章 研究方法 ......................13
2.1 採樣地點 ..........................13
2.2 採樣方法 ......................14
2.2.1 氣溶膠樣本 ......................14
2.2.2 雨水樣本 ......................16
2.3 TOC/TN分析儀 ......................17
2.4 TC、TN濃度與比值 ..................20
第三章 實驗結果 ......................22
3.1 氣溶膠數據結果 ....................22
3.2 雨水數據結果 ......................28
第四章 討論 ......................31
4.1 氣溶膠粒徑和碳、氮濃度相關性的控制因子.31
4.2 影響氣溶膠碳、氮濃度變化的因素 ......37
4.2.1 混合層高度 ......................37
4.2.2 降雨 ......................41
4.2.3 滯留時間 ......................44
4.3 氣團來源 ......................45
第五章 結 論 ......................47
中文參考文獻 ......................48
英文參考文獻 ......................49
中文參考文獻
行政院環境保護署,2019,臺灣空氣污染排放量[TEDS10]線源-排放量推估手冊。https://teds.epa.gov.tw/Data/TEDS10.0/%E6%8A%80%E8%A1%93%E6%89%8B%E5%86%8A/TEDS10.0_%E7%B7%9A%E6%BA%90%E6%8A%80%E8%A1%93%E6%89%8B%E5%86%8A.pdf

行政院環境保護署,環境資源資料庫。https://erdb.epa.gov.tw/DataRepository/EnvMonitor/WeatherData.aspx

交通部中央氣象局,觀測資料庫CWB Observation Data Inquire System。https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp

英文參考文獻
Allison, C. A., Peter, F. D., Jesse, H. K., Douglas R. W., Huffman, J. A., Kenneth, S. D., Ingrid, M. U., Claudia, M., Kimmel J. R., Donna, S., Sun, Y., Zhang, Q., Achim, T., Megan, N., Paul, J. Z., Manjula, R. C., Timothym, B. O. M., Alfarra, M. R., Andre, S. H. P., Josef, D., Jonathan, D., Axel, M., Urs, B., Jose, L. J., 2008, O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environment Science and Technology, 42(12), 4478-4485.

Chin, M., Diehl, T., Ginoux, P., Malm, W., 2007, Intercontinental transport of pollution and dust aerosols: implications for regional air quality. Atmospheric Chemistry and Physics, 7, 5501-5517.

Colbeck, I., Harrison, R. M., 1984, Ozone-Econdary Aerosol-Visibility Relationships in North-West England. Science of The Total Environment, 34, 87-100.

Duce, R. A., Mohnen, V. A., Zimmerman, P. R., Grosjean, D., Cautreels, W., Chatfield, R., Jaenicke, R., Ogren, J. A., Pellizzari, E. D., Wallace, G. T., 1983, Organic material in the global troposphere. Reviews of Geophysics, 21(4), 921-952.

Edney, E. O., Driscoll, D. J., Speer, R. E., Weathers, W. S.,
Kleindienst, T. E., Li, W., Smith, D. F., 2000, Impact of aerosol liquid water on secondary organic aerosol yields of irradiated toluene/propylene/NOx/(NH4)2SO4/air mixtures, Atmospheric Environment, 34(23), 3907-3919.

Fuzzi, S., Andreae, M. O., Huebert, B. J., Kulmala, M., Bond, T. C., Boy, M., Doherty, S. J., Guenther, A., Kanakidou, M., Kawamura, K., Kerminen, V. M., Lohmann, U., Russell, L. M., Poschl, U., 2006, Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmospheric Chemistry and Physics, 6, 2017-2038.

Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K., Rau, J. A., 1986, Characteristics of Atmospherics Organic and Elemental Carbon Particle Concentrations in Los Angeles. Environment Science and Technology, 20, 580-589.

Goldberg, E. D.,1985, Black Carbon in the Environment, John Wiley & Sons, New York.

Jerrett, M., Burnett, R. T., Ma, R., Pope III, C. A., Krewski, D., Newbold, K. B., Thurston, G., Shi, Y., Finkelstein, N., Calle, E. E., Thun, M. J., 2005, Spatial Analysis of Air Pollution and Mortality in Los Angeles. Epidemiology, 16(6), 727-736

Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D., Rudich, Y., 2005, The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11207-11212.

Lau, K. M., Li, M. T., 1984, The monsoon of East Asia and its global associations—A survey. Bulletin of the American Meteorological Society, 65(2), 114-125.

Lelieveld, J., Crutzen, P. J., Ramanathan, V., Andreae, M. O., Brenninkmeijer, C. A. M., Campos, T., Cass, G. R., Dickerson, R. R., Fischer, H., de Gouw, J. A., Hansel, A., Jefferson, A., Kley, D., de Laat, A. T. J., Lal, S., Lawrence, M. G., Lobert, J. M., Mayol-Bracero, O. L., Mitra, A. P., Novakov, T., Oltmans, T., Prather, K. A., Reiner, T., Rodhe, H., Scheeren, H. A., Sikka, D., Williams, J., 2001, The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science, 291(5506), 1031-1036.

Ming, Y., Russell, L. M.,2005, Organic aerosol effects on fog droplet spectra. Journal of Geophysical Research: Atmospheres, 109, D10.

Ohta, S., Okita, T., 1990, A chemical characterizeation of atmospheric aerosol in Sapporo. Atmospheric Environment, 24, 815-822.

Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., Seinfeld, J. H., 1996, Gas/Particle partitioning and secondary organic aerosol yields. Environment Science and Technology, 30, 2580-2585.

Peluso, N., 2005, The New Bump ‘n’ Grind: Identity, Drag, and the Politics of Performance in the New Burlesque. M.A. Thesis, University of Connecticut.

Penner, J. E., Andreae, M. O., Annegarn, H., Barrie, L., Feichter, J., Hegg, D., 2001, Aerosols, their Direct and Indirect Effects. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, 289-348.

Philinis, C., Seinfeld, J. H., 1988, Development and evaluation of an eulerian photochemical gas aerosol model. Atmospheric Environment, 22, 1985-2001.

Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., Thurston, G. D., 2002, Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution.. Original Contribution, 287(9), 1132-1141.

Poschl, U., 2005, Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie Int, Ed., 44, 7520-7540.

Sakugawa, H., Kaplan, I. R., Tsai, W., Cohen, Y., 1990, Atmospheric hydrogen peroxide:
Does it share a role with ozone in degrading air quality? Environment Science and Technology, 24, 1452-1462.

Smith, D. M., Griffin, J. J., Goldberg,E. D., 1975, Spectrometric Method for the Quantitative Determination of Elemental Carbon, Analytical Chemistry,47,233-238.

Song, J. Z., Peng, P. A., Huang, W. L., Black Carbon and Kerogen in Soils and Sediments. 1. Quantification and Characterization. Environmental Science & Technology, 36, 3960-3967.

Sun, Y. L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W. N., Bae, M. S., Hung, H. M., Hogrefe, O., Frank, B., Rattigan, O. V., Lin, Y. C., 2011, Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer. Atmospheric Chemistry and Physics, 11, 1581-1602.

Tiwaria, S., Srivastava, A. K., Bisht, D. S., Parmita, P., Srivastava, M. K., Attri, S. D., 2013, Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmospheric Research, 125, 50-62.

Verardo, D. J., 1997, Charcoal analysis in marine sediments, Limnology and Oceanography, 42, 192-197.

Whitby, K.T., Cantrell, B. K., 1976, Atmospheric aerosols characteristics and measurement. International Conference on
Environmental Sensing and Assessment (ICESA). Institute of Electrical and Electronic Engineers (IEEE), ICESA, 1-6.

WHO, 2006, Guidelines for air quality. http://www.euro.who.int/Document/E87950.pdf

Wilson, T. R., 1975, Salinity and the major elements of sea-water. Chemical Oceanography, 365-413.

Wilson, W. E., Suh, H. H., 1997, Fine Particles and Coarse Particles: Concentration
Relationships Relevant to Epidemiologic Studies. Journal of the Air & Waste Management Association, 47:12, 1238-1249.

Wolff, G. T., Groblicki, P. J., Cadle, S.H., 1982, Particulate Carbon at Various Locations in the United States. Particulate carbon Atmospheric Life Cycle. Wolff, G.T. and R.L. Klimisch (Eds.), 297-315.

Zhao, T. L., Gong, S. L., Zhang, X.Y., McKendry, I. G., 2003, Modeled size-segregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia 2001: Implications for trans-Pacific transport. Journal of Geophysical Research: Atmospheres, 108, D23.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊