|
References
1Fan, F.-R., Tian, Z.-Q. & Wang, Z. L. Flexible triboelectric generator. Nano energy 1, 328-334 (2012). 2Hinchet, R. et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491-494 (2019). 3Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors - Principles, problems and perspectives. Faraday Discuss. 176, 447-458, doi:10.1039/c4fd00159a (2014). 4Zhu, G. et al. Triboelectric-Generator-Driven Pulse Electrodeposition for Micropatterning. Nano Letters 12, 4960-4965, doi:10.1021/nl302560k (2012). 5Zhu, G. et al. Linear-Grating Triboelectric Generator Based on Sliding Electrification. Nano Letters 13, 2282-2289, doi:10.1021/nl4008985 (2013). 6Yang, Y. et al. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. Acs Nano 7, 7342-7351 (2013). 7Wang, S., Xie, Y., Niu, S., Lin, L. & Wang, Z. L. Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes. Adv. Mater. 26, 2818-2824 (2014). 8Wang, Z. L. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Materials Today 20, 74-82 (2017). 9Zou, H. et al. Quantifying the triboelectric series. Nature Communications 10, 1427 (2019). 10Zhang, C. et al. Rotating‐disk‐based direct‐current triboelectric nanogenerator. Advanced Energy Materials 4, 1301798 (2014). 11Guo, H. Y. et al. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics. Acs Nano 10, 10580-10588, doi:10.1021/acsnano.6b06621 (2016). 12Yang, J. et al. Triboelectrification-Based Organic Film Nanogenerator for Acoustic Energy Harvesting and Self-Powered Active Acoustic Sensing. Acs Nano 8, 2649-2657, doi:10.1021/nn4063616 (2014). 13Wang, S. H. et al. Maximum Surface Charge Density for Triboelectric Nanogenerators Achieved by Ionized-Air Injection: Methodology and Theoretical Understanding. Adv. Mater. 26, 6720-6728, doi:10.1002/adma.201402491 (2014). 14Yang, Y. et al. Hybrid Energy Cell for Degradation of Methyl Orange by Self-Powered Electrocatalytic Oxidation. Nano Letters 13, 803-808, doi:10.1021/nl3046188 (2013). 15Yang, Y. et al. Silicon-Based Hybrid Energy Cell for Self-Powered Electrodegradation and Personal Electronics. ACS Nano 7, 2808-2813, doi:10.1021/nn400361p (2013). 16Yang, Y. et al. A hybrid energy cell for self-powered water splitting. Energy & Environmental Science 6, 2429-2434, doi:10.1039/C3EE41485J (2013). 17Hsiao, V. K. et al. Photo-carrier extraction by triboelectricity for carrier transport layer-free photodetectors. Nano Energy 65, 103958 (2019). 18Saravanakumar, B., Mohan, R., Thiyagarajan, K. & Kim, S. J. Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting. RSC Adv. 3, 16646-16656, doi:10.1039/c3ra40447a (2013). 19Ko, Y. H., Nagaraju, G., Lee, S. H. & Yu, J. S. PDMS-based Triboelectric and Transparent Nanogenerators with ZnO Nanorod Arrays. ACS Appl. Mater. Interfaces 6, 6631-6637, doi:10.1021/am5018072 (2014). 20Lee, S., Ko, W. & Hong, J. Enhanced Performance of Triboelectric Nanogenerators Integrated with ZnO Nanowires. Journal of nanoscience and nanotechnology 14, 9319-9322 (2014). 21Chen, S. N., Chen, C. H., Lin, Z. H., Tsao, Y. H. & Liu, C. P. On enhancing capability of tribocharge transfer of ZnO nanorod arrays by Sb doping for anomalous output performance improvement of triboelectric nanogenerators. Nano Energy 45, 311-318, doi:10.1016/j.nanoen.2018.01.013 (2018). 22Chen, S.-N., Huang, M.-Z., Lin, Z.-H. & Liu, C.-P. Enhancing charge transfer for ZnO nanorods based triboelectric nanogenerators through Ga doping. Nano Energy 65, 104069 (2019). 23Seung, W. et al. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS nano 9, 3501-3509 (2015). 24Zhang, C., Tang, W., Zhang, L., Han, C. & Wang, Z. L. Contact electrification field-effect transistor. ACS nano 8, 8702-8709 (2014). 25Zhang, C. & Wang, Z. L. Tribotronics—A new field by coupling triboelectricity and semiconductor. Nano Today 11, 521-536 (2016). 26Zhang, C. et al. Organic Tribotronic Transistor for Contact-Electrification-Gated Light-Emitting Diode. Advanced Functional Materials 25, 5625-5632, doi:10.1002/adfm.201502450 (2015). 27Pang, Y. K. et al. Tribotronic transistor sensor for enhanced hydrogen detection. Nano Research 10, 3857-3864, doi:10.1007/s12274-017-1599-y (2017). 28Xue, F. et al. MoS2 tribotronic transistor for smart tactile switch. Advanced Functional Materials 26, 2104-2109 (2016). 29Wu, J. M., Lin, Y. H. & Yang, B.-Z. Force-pad made from contact-electrification poly(ethylene oxide)/InSb field-effect transistor. Nano Energy 22, 468-474, doi:https://doi.org/10.1016/j.nanoen.2016.02.048 (2016). 30Wang, Z. L., Chen, J. & Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy & Environmental Science 8, 2250-2282 (2015). 31Wang, H., Huang, C.-C. & Polcar, T. Controllable Tunneling Triboelectrification of Two-Dimensional Chemical Vapor Deposited MoS 2. Scientific reports 9, 334 (2019). 32Zhou, Y. S. et al. In situ quantitative study of nanoscale triboelectrification and patterning. Nano letters 13, 2771-2776 (2013). 33Zhou, Y. S. et al. Manipulating nanoscale contact electrification by an applied electric field. Nano letters 14, 1567-1572 (2014). 34Lin, S. Q., Xu, L., Zhu, L. P., Chen, X. Y. & Wang, Z. L. Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect. Adv. Mater. 31, doi:10.1002/adma.201901418 (2019). 35Xu, C. et al. On the electron‐transfer mechanism in the contact‐electrification effect. Adv. Mater. 30, 1706790 (2018). 36Seol, M. L., Han, J. W., Moon, D. I. & Meyyappan, M. Triboelectric nanogenerator for Mars environment. Nano Energy 39, 238-244, doi:10.1016/j.nanoen.2017.07.004 (2017). 37Shen, J. L., Li, Z. L., Yu, J. Y. & Ding, B. Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 40, 282-288, doi:10.1016/j.nanoen.2017.08.035 (2017). 38Zhang, Q., Xu, R. & Cai, W. Pumping electrons from chemical potential difference. Nano Energy 51, 698-703, doi:https://doi.org/10.1016/j.nanoen.2018.07.016 (2018). 39Meyer, B. & Marx, D. Density-functional study of the structure and stability of ZnO surfaces (vol 67, art no 035403, 2003). Phys. Rev. B 67, 1, doi:10.1103/PhysRevB.67.039902 (2003). 40Pearton, S., Norton, D., Ip, K., Heo, Y. & Steiner, T. Recent progress in processing and properties of ZnO. Progress in materials science 50, 293-340 (2005). 41Rössler, U. Energy bands of hexagonal II-VI semiconductors. Physical Review 184, 733 (1969). 42Usuda, M., Hamada, N., Kotani, T. & van Schilfgaarde, M. All-electron GW calculation based on the LAPW method: Application to wurtzite ZnO. Phys. Rev. B 66, 125101 (2002). 43Langer, D. & Vesely, C. Electronic core levels of zinc chalcogenides. Phys. Rev. B 2, 4885 (1970). 44Powell, R., Spicer, W. & McMenamin, J. Location of the Zn 3 d States in ZnO. Physical Review Letters 27, 97 (1971). 45Girard, R. et al. Electronic structure of ZnO (0001) studied by angle-resolved photoelectron spectroscopy. Surface Science 373, 409-417 (1997). 46Ranke, W. Separation of the partial s-and p-densities of valence states of ZnO from UPS-measurements. Solid State Communications 19, 685-688 (1976). 47Göpel, W., Pollmann, J., Ivanov, I. & Reihl, B. Angle-resolved photoemission from polar and nonpolar zinc oxide surfaces. Phys. Rev. B 26, 3144 (1982). 48Greene, L. E. et al. Low‐temperature wafer‐scale production of ZnO nanowire arrays. Angewandte Chemie International Edition 42, 3031-3034 (2003). 49Wang, H., Baek, S., Song, J., Lee, J. & Lim, S. Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays. Nanotechnology 19, 075607 (2008). 50Wang, H., Dong, S., Zhou, X., Hu, X. & Chang, Y. Effect of synthesis conditions on microstructures and photoluminescence properties of Ga doped ZnO nanorod arrays. Physica E: Low-dimensional Systems and Nanostructures 44, 307-312 (2011). 51Phan, D.-T. & Chung, G.-S. Effects of defects in Ga-doped ZnO nanorods formed by a hydrothermal method on CO sensing properties. Sensors and Actuators B: Chemical 187, 191-197 (2013). 52Teke, A. et al. Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys. Rev. B 70, 195207 (2004). 53Zhong, J. et al. Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition. Applied Physics Letters 83, 3401-3403 (2003). 54Mandalapu, L., Xiu, F., Yang, Z. & Liu, J. Ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by molecular-beam epitaxy. Solid-state electronics 51, 1014-1017 (2007). 55Djurišić, A. et al. Defect emissions in ZnO nanostructures. Nanotechnology 18, 095702 (2007). 56Kim, Y. Y., Kong, B. H. & Cho, H. K. Vertically arrayed Ga-doped ZnO nanorods grown by magnetron sputtering: The effect of Ga contents and microstructural evaluation. Journal of Crystal Growth 330, 17-21 (2011). 57Fan, J. C., Sreekanth, K., Xie, Z., Chang, S. & Rao, K. V. p-Type ZnO materials: theory, growth, properties and devices. Progress in Materials Science 58, 874-985 (2013). 58Wang, F. et al. An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires. Nanotechnology 22, 225602 (2011). 59Limpijumnong, S., Zhang, S., Wei, S.-H. & Park, C. Doping by large-size-mismatched impurities: the microscopic origin of arsenic-or antimony-doped p-type zinc oxide. Physical review letters 92, 155504 (2004). 60Lupan, O. et al. Synthesis and characterization of Ag-or Sb-doped ZnO nanorods by a facile hydrothermal route. The Journal of Physical Chemistry C 114, 12401-12408 (2010). 61Ilican, S., Caglar, Y., Caglar, M., Yakuphanoglu, F. & Cui, J. Preparation of Sb-doped ZnO nanostructures and studies on some of their properties. Physica E: Low-dimensional Systems and Nanostructures 41, 96-100 (2008). 62Park, G. C., Hwang, S. M., Lim, J. H. & Joo, J. Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method. Nanoscale 6, 1840-1847 (2014). 63Pineda-Hernandez, G., Escobedo-Morales, A., Pal, U. & Chigo-Anota, E. Morphology evolution of hydrothermally grown ZnO nanostructures on gallium doping and their defect structures. Materials Chemistry and Physics 135, 810-817 (2012). 64Hsiao, C.-H. et al. Field-emission and photoelectrical characteristics of Ga–ZnO nanorods photodetector. IEEE Transactions on Electron Devices 60, 1905-1910 (2013). 65Bera, A. & Basak, D. Carrier relaxation through two-electron process during photoconduction in highly UV sensitive quasi-one-dimensional ZnO nanowires. Applied Physics Letters 93, 053102 (2008). 66Lee, J.-H., Lee, K. Y., Kumar, B. & Kim, S.-W. Synthesis of Ga-doped ZnO nanorods using an aqueous solution method for a piezoelectric nanogenerator. Journal of nanoscience and nanotechnology 12, 3430-3433 (2012). 67Yang, L., Zhou, H., Xue, M., Song, Z. & Wang, H. A self-powered, visible-blind ultraviolet photodetector based on n-Ga:ZnO nanorods/p-GaN heterojunction. Sensors and Actuators A: Physical 267, 76-81, doi:https://doi.org/10.1016/j.sna.2017.08.007 (2017). 68Iwantono, I. et al. Performance of Dye-Sensitized Solar Cell Utilizing Ga-ZnO Nanorods: Effect of Ga Concentration. Int. J. Electrochem. Sci 11, 7499-7506 (2016). 69Yao, I.-C., Lee, D.-Y., Tseng, T.-Y. & Lin, P. Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices. Nanotechnology 23, 145201 (2012). 70Huang, C.-Y., Ho, Y.-T., Hung, C.-J. & Tseng, T.-Y. Compact Ga-doped ZnO nanorod thin film for making high-performance transparent resistive switching memory. IEEE Transactions on Electron Devices 61, 3435-3441 (2014). 71He, J. H., Hsin, C. L., Liu, J., Chen, L. J. & Wang, Z. L. Piezoelectric gated diode of a single ZnO nanowire. Adv. Mater. 19, 781-784 (2007). 72Lin, S., Song, J., Lu, Y. & Wang, Z. Identifying individual n-and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator. Nanotechnology 20, 365703 (2009). 73Lu, M.-P. et al. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano letters 9, 1223-1227 (2009). 74Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242-246 (2006). 75Zhang, Z. et al. Quantitative analysis of current–voltage characteristics of semiconducting nanowires: decoupling of contact effects. Advanced functional materials 17, 2478-2489 (2007). 76Yang, T. et al. Sb doping behavior and its effect on crystal structure, conductivity and photoluminescence of ZnO film in depositing and annealing processes. Journal of Alloys and Compounds 509, 5426-5430 (2011). 77Uhlrich, J., Olson, D., Hsu, J. & Kuech, T. Surface chemistry and surface electronic properties of ZnO single crystals and nanorods. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 27, 328-335 (2009). 78Kurbanov, S., Yang, W. C. & Kang, T. W. Kelvin probe force microscopy of defects in ZnO nanocrystals associated with emission at 3.31 eV. Applied physics express 4, 021101 (2011). 79Ben, C. V., Cho, H. D., Kang, T. W. & Yang, W. Surface potential measurement of As‐doped homojunction ZnO nanorods by Kelvin probe force microscopy. Surface and Interface Analysis 44, 755-758 (2012). 80Ren, C.-Y., Chiou, S.-H. & Hsue, C.-S. Ga-doping effects on electronic and structural properties of wurtzite ZnO. Physica B: Condensed Matter 349, 136-142 (2004). 81Zhu, R. & Yang, R. Separation of the piezotronic and piezoresistive effects in a zinc oxide nanowire. Nanotechnology 25, 345702 (2014). 82Hao, H. et al. Piezoelectric potential in single-crystalline ZnO nanohelices based on finite element analysis. Nanomaterials 7, 430 (2017). 83Ristein, J. Surface transfer doping of semiconductors. Science 313, 1057-1058 (2006).
|