跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宇軒
研究生(外文):Yu-HsuanLee
論文名稱:以液相化學法合成碳化鉬-還原氧化石墨烯複合材料應用於電解催化製氫之研究
論文名稱(外文):Molybdenum carbide and reduced graphene oxide nano-composites as an efficient electrocatalyst for water splitting
指導教授:黃肇瑞黃肇瑞引用關係王聖璋
指導教授(外文):Jow-Lay HuangSheng-Chang Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:91
中文關鍵詞:氫能過渡金屬碳化物碳化鉬濕化學方法水解製氫
外文關鍵詞:Hydrogen Evolution Reactionelectrocatalysistransition metal carbide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氫能源是現今最具有潛力的再生氫能源,水分解產氫(Hydrogen evolution reaction by water splitting)為乾淨、環保與環境友善的製程,但受限於產氫效率差,需要透過電觸媒來降低活化能障,加速製氫效率,至今電觸媒材料Pt為效率最好的材料,但其高成本、地球含量少,近年來科學家正積極尋找能取代Pt之優良電觸媒。碳化鉬(Molybdenum carbide)經由理論計算值與研究顯示,具有與Pt相似的電子能態,作為HER反應之電極其有良好的電化學性質、高導電性、耐酸性環境、高穩定性及高耐久性等優點。本研究成功使用利用簡單、低成本之兩步驟方法合成碳化鉬-還原氧化石墨烯複合材料(MoC-RGO),第一階段以油胺(Oleylamine, OLA)作為溶劑,將鉬源分散在氧化石墨烯(graphene oxide, GO)上,第二階段經由高溫碳化處理,鉬前驅物經高溫結晶形成碳化鉬,氧化石墨烯在高溫下還原形成還原氧化石墨烯( reduced graphene oxide, RGO),其電化學表現,Onset-potential = -150mV, Tafel slope =131mV/dec。OLA作為溶劑雖然能夠均勻分散前驅物,但也會滲入石墨烯層間,降低材料反應活性點之比表面積,進一步透過界面活性劑(TBP)的改質將缺乏導電性之OLA高溫碳化、膨脹,合成TBP-treat-MoC-RGO,增加活性點反應面積以提升催化效率,Onset-potential = -96mV, Tafel slope = 77mV/dec。為了能再提升電化學效率,透過前驅物額外添加葡萄糖(C6H12O6),合成MoxC-RGO兩相複合材料,β相Mo2C結晶性好、催化效率好、結晶顆粒較大(50-80nm),容易堆積在石墨烯邊緣(edge),MoxC-RGO電化學表現更進一步提升Onset-potential = -88mV, Tafel slope =67mV/dec。以上實驗證明碳化鉬-還原氧化石墨烯複合材料,應用於水分解產氫的潛力,未來可望藉由縮小產物尺寸、載體結構或是摻雜等方式進一步改善材料表面性質,發展低成本、高活性及穩定之替代白金之電催化產氫觸媒。
Hydrogen has been considered as one of the most promising renewable energy for production and storage to replace petroleum-based energy. In this study, a transition metal carbide was used to replace the platinum electrode. We used two-step method to synthesis MoxC-RGO . In the first stage, Oleylamine (OLA) was used as a solvent to disperse the molybdenum source on graphene oxide (GO).The second stage is high-temperature carbonization treatment. The molybdenum precursor is crystallized at a high temperature to form molybdenum carbide, and the graphene oxide is reduced at a high temperature to form reduced graphene oxide (RGO). The results show that the Mo2C poder was dispersed in the composite material of RGO. The electrochemical results show that the onset potential of MoxC-RGO is about -88mV and the Tafel slope is 67mV dec-1.
總目錄
中文摘要 I
Extended Abstract II
致謝 X
總目錄 XI
第一章 緒論 1
1.1前言 1
1.2碳化鉬的發展 2
1.3研究動機與目的 3
第二章 文獻回顧 4
2.1水分解產氫之反應(Water Splitting for Hydrogen Evolution Reaction) 4
2.2電催化觸媒 11
2.2.1電催化劑選用要求 11
1.氫吸附自由能 (Hydrogen adsorption free energy, ΔGH*) 11
2.反應活性催化點 (Active edge sites) 13
3.導電性 (Conductivity) 14
4.永續性(Sustainability) 14
2.2.2評斷電催化劑性質之參數 15
1.起始電位(onset potential, η) 15
2.塔弗斜率(Tafel slope, b) 16
3.交換電流密度 (Exchange current density, j0) 17
4.交流阻抗譜與導電率 (AC impedance spectroscopy and conductivity) 17
5.穩定性 (Durability test for stability) 17
6.轉化頻率 (Turnover frequency, TOF) 18
2.2.3常用的電催化材料 20
1.白金及其複合材料 (Pt and Pt-based material) 22
2.非金屬及其複合材料 (Non-metal and Non-metal-based material) 22
3.過渡金屬碳化物 (Transition metal carbides, TMCs) 24
2.3碳化鉬(Molybdenum carbide) 27
2.3.1相與結構 27
2.3.2催化性質 29
2.3.3製程 31
第三章 研究方法與實驗步驟 34
3.1實驗藥品 34
3.2實驗設備 35
3.2.1迴流(reflux)裝置 35
3.2.2管型高溫爐裝置 36
3.2.3 電化學量測裝置 37
3.3實驗流程 38
3.3.1. ŋ相奈米碳化鉬-還原氧化石墨烯複合材料之合成與改質(ŋMoC-RGO) 38
1.前驅物製備(Precursor preparation): 38
2.奈米粒子粉末收集(Collection of nanoparticle powder) 38
3.界面活性劑處理 (Surfactant-treated) 39
4.高溫碳化處理(Carbonization) 39
3.3.2 η相與β相混合奈米碳化鉬-還原氧化石墨烯之合成(MoxC-RGO) 41
1.前驅物製備(Precursor preparation): 41
2.熱注入(Hot-injection) 41
3.奈米粒子粉末收集(Collection of nanoparticle powder) 41
4.高溫碳化處理(Carbonization) 42
3.3.3η相與β相混合奈米碳化鉬-導電基材之合成(MoxC-matrix) 44
1.濕化學混和(Wet chemical mixing) 44
2.高溫碳化處理(Carbonization) 44
3.3.4製備工作電極 (Working electrode preparation) 46
3.4 導電基材的製備 47
3.4.1 氧化石墨烯(Graphene oxide)的製備 47
3.4.2金屬有機骨架(Metal-organic Frameworks)的製備 47
3.5 材料鑑定分析 48
3.5.1 X-ray繞射分析儀 (X-ray diffraction spectrometer:XRD) 48
3.5.2 高解析場發射掃描式電子顯微鏡 (High Resolution Field Emission Scanning Electron Microscopy:FE-SEM) 49
3.5.3 高解析分析電子顯微鏡 (Ultrahigh Resolution Analytical Electron Microscopy:HR-AEM) 50
3.5.4 傅立葉轉換紅外光譜 (Fourier-transform Infrared Spectroscopy: FTIR) 51
3.5.5 電子能譜化學分析儀 (Electron Spectroscopy for Chemical Analysis:ESCA) 52
3.5.6電化學性質分析 53
第四章、結果與討論 54
4.1 η相碳化鉬-還原氧化石墨烯 54
4.1.1晶相分析 55
4.1.2微結構分析 56
4.1.3電催化產氫效能量測與機制探討 62
4.1.4小結 64
4.2 ŋ+β混和相碳化鉬-還原氧化石墨烯 65
4.2.1熱重分析 65
4.2.2晶相分析 66
4.2.3價數態與元素能譜分析 68
4.2.4微結構分析 70
4.2.5電催化產氫效能量測與機制探討 73
4.2.6小結 75
4.3混和相碳化鉬-導電基材複合材料 76
4.3.1晶相分析 76
4.3.2 微結構分析 77
4.3.3電催化產氫效能量測與機制探討 81
4.3.4小結 85
第五章 結論 86
第六章 參考文獻 87
[1]Q. P. Lu, Y. F. Yu, Q. L. Ma, B. Chen, and H. Zhang, 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions, (in English), Advanced Materials, vol. 28, no. 10, pp. 1917-1933, Mar 9 2016.
[2]N. Z. Muradov and T. N. Veziroglu, Green path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies, (in English), International Journal of Hydrogen Energy, vol. 33, no. 23, pp. 6804-6839, Dec 2008.
[3]A. B. Laursen, S. Kegnaes, S. Dahl, and I. Chorkendorff, Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution, (in English), Energ Environ Sci, vol. 5, no. 2, pp. 5577-5591, Feb 2012.
[4]E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis, and R. E. Schaak, Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles, Angew Chem Int Ed Engl, vol. 53, no. 21, pp. 5427-30, May 19 2014.
[5]T. N. Veziroğlu and S. Şahi˙n, 21st Century’s energy: Hydrogen energy system, Energy Conversion and Management, vol. 49, no. 7, pp. 1820-1831, 2008.
[6](IRENA_RE_Capacity_Statistics_2019.pdf).
[7]R. J. Farrauto, M. Deeba, and S. Alerasool, Gasoline automobile catalysis and its historical journey to cleaner air, Nature Catalysis, vol. 2, no. 7, pp. 603-613, 2019.
[8]M. Balat, Potential importance of hydrogen as a future solution to environmental and transportation problems, International Journal of Hydrogen Energy, vol. 33, no. 15, pp. 4013-4029, 2008.
[9]M. B. R. B. Levy, (Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis.pdf), Science 10 Aug 1973:, vol. Vol. 181, Issue 4099, pp. 547-549, 1973. American Association for the Advancement of Science
[10]S. Posada-Perez, F. Vines, J. A. Rodriguez, and F. Illas, Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces, J Chem Phys, vol. 143, no. 11, p. 114704, Sep 21 2015.
[11]M. A. G. J. L. B. Esneyder Puello-Polo*, (NATURE OF THE ACTIVE PHASE IN HYDRODESULFURIZATION MOLYBDENUM CARBIDE SUPPORTED ON ACTIVATED CARBON.pdf), CT&F - Ciencia, Tecnología y Futuro,, vol. vol.5 no.4 Bucaramanga, 2014.
[12]H. Lin et al., Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction, Chem Sci, vol. 7, no. 5, pp. 3399-3405, May 1 2016.
[13]X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chem Soc Rev, vol. 44, no. 15, pp. 5148-80, Aug 7 2015.
[14]F. M. Wang et al., Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting, (in English), Nanoscale, vol. 7, no. 47, pp. 19764-19788, 2015.
[15]J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nature materials, vol. 5, no. 11, pp. 909-913, 2006.
[16]A. J. Medford et al., From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis, (in English), J Catal, vol. 328, pp. 36-42, Aug 2015.
[17]R. Michalsky, Y.-J. Zhang, and A. A. Peterson, Trends in the Hydrogen Evolution Activity of Metal Carbide Catalysts, ACS Catalysis, vol. 4, no. 5, pp. 1274-1278, 2014.
[18]R. F. Boehm, H. Yang, and J. Yan, Handbook of clean energy systems. Chichester, West Sussex: John Wiley & Sons, Inc., 2015, p. volumes cm.
[19]J. F. Xie et al., Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution, (in English), Advanced Materials, vol. 25, no. 40, pp. 5807-+, Oct 2013.
[20]D. Y. Wang et al., Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2 Nanosheets-Carbon Nanotubes for Hydrogen Evolution Reaction, (in English), Journal of the American Chemical Society, vol. 137, no. 4, pp. 1587-1592, Feb 4 2015.
[21]T. K. Zhao, J. K. Zhang, Z. Du, Y. H. Liu, G. L. Zhou, and J. T. Wang, Dopamine-derived N-doped carbon decorated titanium carbide composite for enhanced supercapacitive performance, (in English), Electrochim Acta, vol. 254, pp. 308-319, Nov 10 2017.
[22]L. Liao et al., A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction, (in English), Energ Environ Sci, vol. 7, no. 1, pp. 387-392, Jan 2014.
[23]A. J. Bard and L. R. Faulkner, Electrochemical methods : fundamentals and applications, 2nd ed. New York: Wiley, 2001, pp. xxi, 833 p.
[24]J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont, and T. F. Jaramillo, Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials, (in English), Acs Catalysis, vol. 4, no. 11, pp. 3957-3971, Nov 2014.
[25]J. Chen, B. Lim, E. P. Lee, and Y. Xia, Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications, Nano Today, vol. 4, no. 1, pp. 81-95, 2009.
[26]X. Huang et al., Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets, Nature Communications, vol. 4, Feb 2013, Art no. 1444.
[27]Y. J. Wang, B. Z. Fang, H. Li, X. T. T. Bi, and H. J. Wang, Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells, Progress in Materials Science, vol. 82, pp. 445-498, Sep 2016.
[28]E. J. Popczun et al., Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction, Journal of the American Chemical Society, vol. 135, no. 25, pp. 9267-9270, 2013.
[29]Y. Zhao et al., Graphitic Carbon Nitride Nanoribbons: Graphene‐Assisted Formation and Synergic Function for Highly Efficient Hydrogen Evolution, Angewandte Chemie International Edition, vol. 53, no. 50, pp. 13934-13939, 2014.
[30]X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chemical Society Reviews, vol. 44, no. 15, pp. 5148-5180, 2015.
[31]Y. Zheng et al., Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution, ACS nano, vol. 8, no. 5, pp. 5290-5296, 2014.
[32]S. H. Jhi, J. Ihm, S. G. Louie, and M. L. Cohen, Electronic mechanism of hardness enhancement in transition-metal carbonitrides, (in English), Nature, vol. 399, no. 6732, pp. 132-134, May 13 1999.
[33]M. Naguib et al., MXene: a promising transition metal carbide anode for lithium-ion batteries, (in English), Electrochem Commun, vol. 16, no. 1, pp. 61-64, Mar 2012.
[34]M. Woydt and H. Mohrbacher, Friction and wear of binder-less niobium carbide, (in English), Wear, vol. 306, no. 1-2, pp. 126-130, Aug 30 2013.
[35]Y. Kumashiro and E. Sakuma, The Vickers Micro-Hardness of Nonstoichiometric Niobium Carbide and Vanadium Carbide Single-Crystals up to 1500-Degrees-C, (in English), J Mater Sci, vol. 15, no. 5, pp. 1321-1324, 1980.
[36]D. J. Ham, Y. K. Kim, S. H. Han, and J. S. Lee, Pt/WC as an anode catalyst for PEMFC: Activity and CO tolerance, (in English), Catal Today, vol. 132, no. 1-4, pp. 117-122, Mar 31 2008.
[37]K. C. Lee, A. Ishihara, S. Mitsushima, N. Kamiya, and K. I. Ota, Stability and electrocatalytic activity for oxygen reduction in WC plus Ta catalyst, (in English), Electrochim Acta, vol. 49, no. 21, pp. 3479-3485, Sep 1 2004.
[38]R. Ganesan and J. S. Lee, Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation, (in English), Angew Chem Int Edit, vol. 44, no. 40, pp. 6557-6560, 2005.
[39]Y. Zhong, X. H. Xia, F. Shi, J. Y. Zhan, J. P. Tu, and H. J. Fan, Transition Metal Carbides and Nitrides in Energy Storage and Conversion, (in English), Adv Sci, vol. 3, no. 5, May 2016.
[40]K. Hirata et al., Observation of a neutrino burst from the supernova SN1987A, Phys Rev Lett, vol. 58, no. 14, pp. 1490-1493, Apr 6 1987.
[41]C. Wan, Y. N. Regmi, and B. M. Leonard, Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction, Angew Chem Int Ed Engl, vol. 53, no. 25, pp. 6407-10, Jun 16 2014.
[42]B. Predel. C-Mo (Carbon-Molybdenum): Datasheet from Landolt-Börnstein - Group IV Physical Chemistry · Volume 5B: B-Ba – C-Zr in SpringerMaterials (https://doi.org/10.1007/10040476_643), Springer-Verlag Berlin Heidelberg. [Online]. Available: https://materials.springer.com/lb/docs/sm_lbs_978-3-540-46733-5_643
https://doi.org/10.1007/10040476_643.
[43]J. K. N. John R. Kitchin, Mark A. Barteau, Jingguang G. Chen, (Trends in the chemical properties of early transition metal carbide surfaces A density functional study.pdf), Chemical Engineering; Chemistry, vol. 10.1016, 2005.
[44]K. Gao et al., Efficient Metal-Free Electrocatalysts from N-Doped Carbon Nanomaterials: Mono-Doping and Co-Doping, Adv Mater, vol. 31, no. 13, p. e1805121, Mar 2019.
[45]J. G. C. Henry H. Hwu, (Surface Chemistry of Transition Metal Carbides.pdf), Chem. Rev., vol. 105, 185-212, 2005.
[46]J. A. R. Ping Liu, (Catalytic Properties of Molybdenum Carbide, Nitride and Phosphide A Theoretical Study.pdf), Catalysis Letters, vol. Vol. 91, Nos. 3–4,, 2003.
[47]B. H. M. Mavrikakis, J. K. Nørskov, (Effect of Strain on the Reactivity of Metal Surfaces.pdf), VOLUME 81, NUMBER 13, vol. PHYSICAL REVIEW LETTERS, 1998.
[48]J. R. Politi, F. Vines, J. A. Rodriguez, and F. Illas, Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces, Phys Chem Chem Phys, vol. 15, no. 30, pp. 12617-25, Aug 14 2013.
[49]M. P. L. LECLERCQ, H. PASTOR, G. LECLERCQ, (Catalytic Properties of Transition Metal Carbides.pdf), JOURNAL OF CATALYSIS, vol. 117, 384-395, 1988.
[50]L. F. Pan, Y. H. Li, S. Yang, P. F. Liu, M. Q. Yu, and H. G. Yang, Molybdenum carbide stabilized on graphene with high electrocatalytic activity for hydrogen evolution reaction, Chem Commun (Camb), vol. 50, no. 86, pp. 13135-7, Nov 7 2014.
[51]H. B. Wu, B. Y. Xia, L. Yu, X. Y. Yu, and X. W. Lou, Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production, Nat Commun, vol. 6, p. 6512, Mar 11 2015.
[52]W. F. Chen et al., Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production, Energy & Environmental Science, vol. 6, no. 3, 2013.
[53]J. S. Li et al., Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution, Nat Commun, vol. 7, p. 11204, Apr 1 2016.
[54]J. Jo et al., Facile synthesis of reduced graphene oxide by modified Hummer's method as anode material for Li-, Na- and K-ion secondary batteries, R Soc Open Sci, vol. 6, no. 4, p. 181978, Apr 2019.
[55]S. H. Jing Shi, Huanhuan Liu, Yanghe Fu, Fumin Zhang, Yijun Zhong, Weidong Zhu, (Synthesis of MIL-100(Fe) at Low Temperature and Atmospheric Pressure.pdf), Journal of Chemistry, vol. Volume 2013, Article ID 792827, 4 pages, 2013.
[56]M. Miao, J. Pan, T. He, Y. Yan, B. Y. Xia, and X. Wang, Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction, in Chemistry vol. 23, 2017/05/06 ed, 2017, pp. 10947-10961.
[57]W. F. Chen, J. T. Muckerman, and E. Fujita, Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts, Chem Commun (Camb), vol. 49, no. 79, pp. 8896-909, Oct 11 2013.
[58]Y. S. Wei Gao, Youfang Zhang, Lizeng Zuo, Hengyi Lu, Yunpeng Huang, Wei Fan, Tianxi Liu, (Molybdenum Carbide Anchored on Graphene Nanoribbons as Highly Efficient All-pH Hydrogen Evolution Reaction Electrocatalyst.pdf), ACS Sustainable Chem. Eng, vol. 4, 6313−6321, 2016.
[59]C. He and J. Tao, Synthesis of nanostructured clean surface molybdenum carbides on graphene sheets as efficient and stable hydrogen evolution reaction catalysts, Chem Commun (Camb), vol. 51, no. 39, pp. 8323-5, May 14 2015.
[60]F. X. Ma, H. B. Wu, B. Y. Xia, C. Y. Xu, and X. W. Lou, Hierarchical beta-Mo2 C Nanotubes Organized by Ultrathin Nanosheets as a Highly Efficient Electrocatalyst for Hydrogen Production, Angew Chem Int Ed Engl, vol. 54, no. 51, pp. 15395-9, Dec 14 2015.
[61]H. Vrubel and X. Hu, Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions, Angew Chem Int Ed Engl, vol. 51, no. 51, pp. 12703-6, Dec 14 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top