(3.238.235.155) 您好!臺灣時間:2021/05/11 18:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王瀚宇
研究生(外文):Han-YuWang
論文名稱:熱力學計算輔助轉爐石循環利用製程優化
論文名稱(外文):CALPHAD-assisted process optimization for circular applications of BOF slag
指導教授:林士剛
指導教授(外文):Shih-kang Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:112
中文關鍵詞:轉爐石熱力學計算FactSage熱力學計算軟體高溫還原法調渣劑
外文關鍵詞:BOF slagCALPHAD modelingsmelting reductionbasicity modifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在人類經濟快速發展的同時,過度開採地球資源也造成環境的汙染與破壞,聯合國提出的17項永續發展目標,揭示人類永續社會的未來藍圖,我國推動的五加二產業創新計劃也強調資源的循環再利用。轉爐石為一貫作業鋼廠煉鋼脫磷過程之副產物,高磷成分使轉爐石無法在鋼鐵廠中直接回收使用,且體積穩定性亦受到游離氧化鈣(Free-CaO)之影響,使得轉爐石受限於低價值的路面粒料等應用,仰賴新製程開發幫助廢棄物的再利用與高值化,然而,傳統製程開發必須仰賴大量試誤過程,曠日廢時且所費不貲,因此,本研究利用CALPHAD熱力學計算軟體FactSage,設計轉爐石的改質與還原製程,透過調渣劑的添加與高溫還原法,消除轉爐石內高熔點的渣相,並降低磷含量,模擬計算依據轉爐石熔點、平衡相、終點成分等條件,篩選出最佳的反應路徑,並進行熱模實驗驗證,透過該製程將轉爐石高質化為類高爐石,即可作為建築材料應用於水泥與混凝土添加,預期研究之成果對於實際轉爐石的循環再利用具有極重要的參考價值。
Since the industrial revolution in 18th century, technology development started to become rapidly. However, the Earth is under destroying due to various human activities, and the climate change as well as the environmental pollution are happening now. The Sustainable Development Goals (SDGs), set by the United Nations General Assembly, were designed to be a “blueprint to achieve a better and more sustainable future for all”. In line with global trends, the Taiwan government proposed “The 5+2 Industrial Transformation Plan” including circular economy and emphasizing on the recycling and reuse of resources in order to assure sustainable development of the economy and the protection of the environment. Therefore, the development of new processes is essential for recycling and adding values on industrial wastes, which is a necessity for promoting economics in a sustainable society.
Basic-oxygen furnace (BOF) slag, a byproduct during the steelmaking process, is composed of high free-CaO (unreacted CaO), FeO, and P2O5 contents. BOF slag is wasted and has been used as aggregates for road and hydraulic construction. However, free-CaO can hydrolyze with water and increase the volume, which result in safety issues. Another issue is the FeO content in BOF slag, which is a problematic quantity in the manufacture of cement. However, it is also an available source of iron. Moreover, the enrichment of phosphorus in the liquid iron results from the recycling of the P-bearing slag in the blast furnace process, which burdens the following dephosphorization of the liquid iron, and limits the reuse of BOF slag in the steel plant.
As a consequence, the steelmaking industry has a considerable interest in the valorization of BOF slag. To solve these problems, a new approach for recycling BOF slag is to apply it on construction as BF slag, involving materials modification with multicomponent complex reactions at high temperatures. A process is designed to modify and reduce BOF slag in order to change its composition to BF slag composition, because BF slag can be used as a high-value alternative to conventional Portland cement. Silica or alumina was used as a basicity modifier for the modification, while hot metal bath containing carbon was used as a reducing agent for the smelting reduction. With the aid of CALPHAD-type thermodynamic modeling, one optimized the reaction path of BOF slag, which satisfied all the criteria including low melting temperature, no solid phase precipitation and target composition in order to lower the free-CaO, FeO, and P2O5 contents during an entire process. Furthermore, the effective equilibrium reaction zone (EERZ) model was applied to simulate the interfacial reaction between the iron melt and the liquid slag. Reaction path in CaO-SiO2-Al2O3-MgO-FeO-P2O5 system was thoroughly investigated and an optimized reaction path was found. The high-temperature experiments were conducted to validate the thermodynamic predictions. With the combination of thermodynamic calculation and high-temperature experiment, this study is expected to promote the circular applications of BOF slag in the steelmaking industry.
摘要 I
Abstract II
Contents IV
List of Figures VI
List of Tables XI
Chapter 1. Introduction 1
Chapter 2. Literature Review 5
2.1 Basic-oxygen-furnace slag (BOF slag) 5
2.2 Smelting reduction 7
2.3 Basicity modifier 12
Chapter 3. Experimental and Calculation Methods 15
3.1 CALPHAD method 15
3.1.1 Calculation of modification and reduction 19
3.1.2 Effective equilibrium reaction zone model 20
3.1.3 Calculation of melting temperature 28
3.1.4 Calculation of interfacial reaction 29
3.2 Preparation of materials 38
3.3 Experimental setup 39
3.3.1 High-frequency induction furnace 39
3.3.2 Furnace temperature calibration 40
3.4 Analysis 43
3.5 Experimental procedure 45
Chapter 4. Results and Discussion 46
4.1 Validation of experimental results in the literature 46
4.2 CALPHAD analysis of modification and reduction reaction 50
4.2.1 Calculation of the BOF slag composition 50
4.2.2 Calculation of melting point 51
4.2.3 Calculation of reduction reaction 53
4.2.4 Calculation of hot metal bath cycling 66
4.2.5 Calculation of metal bath in batch processing 75
4.2.6 Calculation of interfacial reaction 79
4.2.7 Calculation of enthalpy change in interfacial reaction 86
4.3 Interfacial reaction between metal bath and BOF slag 88
4.3.1 Analysis of as-received BOF slag 88
4.3.2 Crucible selection 88
4.3.3 Composition evolution of metal bath 90
4.3.4 Composition evolution of BOF slag 94
4.3.5 Microstructure analysis of BOF slag 97
Chapter 5. Conclusions 100
References 101
Appendix 108
1.Brundtland, G.H., M. Khalid, S. Agnelli, S. Al-Athel, and B. Chidzero, Our common future. New York, 1987: p. 8.
2.Sustainable Development Goals - 17 Goals to Transform Our World (https://www.un.org/sustainabledevelopment/).
3.Griggs, D., M. Stafford-Smith, O. Gaffney, J. Rockström, M.C. Öhman, P. Shyamsundar, W. Steffen, G. Glaser, N. Kanie, and I. Noble, Policy: Sustainable development goals for people and planet. Nature, 2013. 495(7441): p. 305.
4.National Development Coucil (https://www.ndc.gov.tw/Content_List.aspx?n=9D024A4424DC36B9).
5.CHC Resources Corporation (http://www.chc.com.tw/).
6.EUROSLAG (https://www.euroslag.com/).
7.Meyer, C., Recycled materials in concrete. Developments in the Formulation and Reinforcement of Concrete, 2008: p. 208-230.
8.Mindess, S., Developments in the Formulation and Reinforcement of Concrete. 2019: Woodhead Publishing.
9.Reuter, M., Y. Xiao, and U. Boin. Recycling and environmental issues of metallurgical slags and salt fluxes. in VII International conference on molten slags fluxes and salts, The South African Institute of Mining and Metallurgy. 2004.
10.Geiseler, J., Use of steelworks slag in Europe. Waste management, 1996. 16(1-3): p. 59-63.
11.Horii, K., T. Kato, K. Sugahara, N. Tsutsumi, and Y. Kitano, Overview of iron/steel slag application and development of new utilization technologies. Nippon Steel and Sumitomo Metal Technical Report, 2015. 109: p. 5-11.
12.Engström, F., Y. Pontikes, D. Geysen, P.T. Jones, B. Björkman, and B. Blanpain. Hot stage engineering to improve slag valorisation options. in International Slag Valorisation Symposium: 18/04/2011-20/04/2011. 2011. Katholieke Universitat.
13.Drissen, P. and D. Mudersbach, By-products in Iron and Steelmaking-Troublesome materials or secondary raw materials? Waste Recovery in Ironmaking and Steelmaking Processes, 2010.
14.李育成, 楊金成, 蔡立文, and 俞明塗, 轉爐渣改質技術在中鋼之應用與突破. 鑛冶: 中國鑛冶工程學會會刊, 2014(228): p. 23-32.
15.Proctor, D., K. Fehling, E. Shay, J. Wittenborn, J. Green, C. Avent, R. Bigham, M. Connolly, B. Lee, and T. Shepker, Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environmental science & technology, 2000. 34(8): p. 1576-1582.
16.WIKIPEDIA, Smelting.
17.NEWS, T., 不斷大興土木的世界 砂石開採無底線.
18.關鍵評論, T.N.L., 只剩中國「願意」賣給台灣?經濟部將開採陸砂,一年挖走近1000萬公噸.
19.Liu, Z.-K., First-principles calculations and CALPHAD modeling of thermodynamics. Journal of phase equilibria and diffusion, 2009. 30(5): p. 517.
20.Bale, C.W., P. Chartrand, S. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A. Pelton, and S. Petersen, FactSage thermochemical software and databases. Calphad, 2002. 26(2): p. 189-228.
21.Bale, C., E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, A. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. Van Ende, FactSage thermochemical software and databases, 2010-2016. Calphad, 2016. 54(2): p. 35-53.
22.Bale, C., E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, and A. Pelton, FactSage thermochemical software and databases—recent developments. Calphad, 2009. 33(2): p. 295-311.
23.Van Ende, M.-A., Y.-M. Kim, M.-K. Cho, J. Choi, and I.-H. Jung, A kinetic model for the Ruhrstahl Heraeus (RH) degassing process. Metallurgical and Materials Transactions B, 2011. 42(3): p. 477-489.
24.WIKIPEDIA, Sustainable Development Goals.
25.Yildirim, I.Z. and M. Prezzi, Chemical, mineralogical, and morphological properties of steel slag. Advances in Civil Engineering, 2011. 2011.
26.Macphee, D.E. and E.E. Lachowski, Cement Components and Their Phase. Lea’s chemistry of cement and concrete, 2003. 95.
27.Li, J.-y., M. Zhang, M. Guo, and X.-M. Yang, Enrichment mechanism of phosphate in CaO-SiO2-FeO-Fe2O3-P2O5 steelmaking slags. Metallurgical and Materials Transactions B, 2014. 45(5): p. 1666-1682.
28.Chang, K., C. Huang, W. Huang, and Y.-C. Liu, Investigations of microstructure and phosphorus distribution in BOF slag. China Steel Technical Report, 2008. 21: p. 1-6.
29.Pal, J., P. Chaudhary, and M. Goswami, Utilisation of LD slag–An overview. Journal of Metallurgy and Materials Science, 2003. 45(2): p. 61-72.
30.Horii, K., T. Kato, K. Sugahara, N. Tsutsumi, and Y. Kitano, Overview of iron/steel slag application and development of new utilization technologies. Nippon Steel & Sumitomo Technical Report, 2015. 109.
31.Waligora, J., D. Bulteel, P. Degrugilliers, D. Damidot, J. Potdevin, and M. Measson, Chemical and mineralogical characterizations of LD converter steel slags: A multi-analytical techniques approach. Materials characterization, 2010. 61(1): p. 39-48.
32.Jung, S.S. and I. Sohn, Effect of FeO Concentration on the Crystallization of High‐Temperature CaO–Al2O3–MgO–FeO Melts. Journal of the American Ceramic Society, 2013. 96(4): p. 1309-1316.
33.Yi, H., G. Xu, H. Cheng, J. Wang, Y. Wan, and H. Chen, An overview of utilization of steel slag. Procedia Environmental Sciences, 2012. 16: p. 791-801.
34.WIKIPEDIA, Carbothermic reaction.
35.Morita, K., M. Guo, N. Oka, and N. Sano, Resurrection of the iron and phosphorus resource in steel-making slag. Journal of Material Cycles and Waste Management, 2002. 4(2): p. 93-101.
36.Nakase, K., A. Matsui, N. Kikuchi, Y. Miki, Y. Kishimoto, I. Goto, and T. Nagasaka, Fundamental Research on a Rational Steelmaking Slag Recycling System by Phosphorus Separation and Collection. Journal for Manufacturing Science & Production, 2013. 13(1-2): p. 39-45.
37.Liu, C., S. Huang, P. Wollants, B. Blanpain, and M. Guo, Valorization of BOF steel slag by reduction and phase modification: metal recovery and slag valorization. Metallurgical and Materials Transactions B, 2017. 48(3): p. 1602-1612.
38.Su, T.H., H.J. Yang, Y.C. Lee, Y.H. Shau, E. Takazawa, M.F. Lin, J.L. Mou, and W.T. Jiang, Reductive Heating Experiments on BOF‐Slag: Simultaneous Phosphorus Re‐Distribution and Volume Stabilization for Recycling. steel research international, 2016. 87(11): p. 1511-1526.
39.Li, G.-q., F. Zhang, L. Zhang, and Z.-t. Sui, Recycle of converter slag by high temperature carbon thermal reduction. Journal of materials and metallurgy, 2003. 2(3): p. 167-172.
40.Jiang, M.-f., Y.-y. Cui, D.-y. Wang, M. Yi, and C.-j. Liu, Effect of modification treatment for reduction of dephosphorization slag in hot metal bath. Journal of Iron and Steel Research, International, 2013. 20(1): p. 1-20.
41.Jung, S.M., Y.J. Do, and J.H. Choi, Reduction behaviour of BOF type slags by solid carbon. steel research international, 2006. 77(5): p. 305-311.
42.Ishikawa, M., Reduction behaviors of hot metal dephosphorization slag in a slag regenerator. ISIJ international, 2006. 46(4): p. 530-538.
43.Jung, S.M. and Y.J. Do, Reduction behaviour of BOF slags by carbon in iron. steel research international, 2006. 77(5): p. 312-316.
44.I.D. Sommerville, P.G.a.J.T., Ironmaking & Steelmaking, 1980. No.1: p. 25.
45.Liu, C., S. Huang, B. Blanpain, and M. Guo, Effect of Al2O3 Addition on Mineralogical Modification and Crystallization Kinetics of a High Basicity BOF Steel Slag. Metallurgical and Materials Transactions B, 2019. 50(1): p. 271-281.
46.Liu, C., S. Huang, B. Blanpain, and M. Guo, Optimization of Mineralogy and Microstructure of Solidified Basic Oxygen Furnace Slag Through SiO2 Addition or Atmosphere Control During Hot-Stage Slag Treatment. Metallurgical and Materials Transactions B, 2019. 50(1): p. 210-218.
47.Pelton, A., S. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault, The modified quasichemical model I—binary solutions. Metallurgical and Materials Transactions B, 2000. 31(4): p. 651-659.
48.Pelton, A.D. and M. Blander, Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach—application to silicate slags. Metallurgical Transactions B, 1986. 17(4): p. 805-815.
49.Pelton, A.D. and P. Wu, Thermodynamic modeling in glass-forming melts. Journal of non-crystalline solids, 1999. 253(1-3): p. 178-191.
50.Fowler, R.H. and E.A. Guggenheim, Statistical thermodynamics of super-lattices. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1940. 174(957): p. 189-206.
51.Pelton, A.D., Thermodynamic database development—modeling and phase diagram calculations in oxide systems. Rare Metals, 2006. 25(5): p. 473-480.
52.Degterov, S.A., A.D. Pelton, E. Jak, and P.C. Hayes, Experimental study of phase equilibria and thermodynamic optimization of the Fe-Zn-O system. Metallurgical and Materials Transactions B, 2001. 32(4): p. 643-657.
53.Jung, I.-H., S.A. Decterov, and A.D. Pelton, Critical thermodynamic evaluation and optimization of the Fe–Mg–O system. Journal of Physics and Chemistry of Solids, 2004. 65(10): p. 1683-1695.
54.Hillert, M., The compound energy formalism. Journal of Alloys and Compounds, 2001. 320(2): p. 161-176.
55.Park, J., S. Sridhar, and R.J. Fruehan, Kinetics of reduction of SiO2 in SiO2-Al2O3-CaO slags by Al in Fe-Al (-Si) melts. Metallurgical and Materials Transactions B, 2014. 45(4): p. 1380-1388.
56.Sun, H. and K. Mori, Oxidation rate of aluminum in molten iron by CaO-SiO2-Al2O3-FeO-MnO slag. iSIJ International, 1996. 36(Suppl): p. S34-S37.
57.Van Ende, M.-A. and I.-H. Jung, Applications of Thermodynamic Database to the Kinetic Steelmaking Process Simulations, in Computational Materials System Design. 2018, Springer. p. 47-66.
58.Van Ende, M.-A. and I.-H. Jung, A kinetic ladle furnace process simulation model: effective equilibrium reaction zone model using FactSage macro processing. Metallurgical and Materials Transactions B, 2017. 48(1): p. 28-36.
59.Shin, J.H., Y. Chung, and J.H. Park, Refractory–slag–metal–inclusion multiphase reactions modeling using computational thermodynamics: kinetic model for prediction of inclusion evolution in molten steel. Metallurgical and Materials Transactions B, 2017. 48(1): p. 46-59.
60.Van Ende, M.-A. and I.-H. Jung, Development of a thermodynamic database for mold flux and application to the continuous casting process. ISIJ international, 2014. 54(3): p. 489-495.
61.Macro Processing Manual - FactSage 7.2 (http://www.crct.polymtl.ca/fact/Macros.htm).
62.Tyler, G. and S. Jobin Yvon, ICP-OES, ICP-MS and AAS Techniques Compared. ICP Optical Emission Spectroscopy Technical Note, 1995. 5.
63.Olesik, J.W., Elemental analysis using ICP-OES and ICP/MS. Analytical Chemistry, 1991. 63(1): p. 12A-21A.
64.Wang, Z., Q. Shu, S. Sridhar, M. Zhang, M. Guo, and Z. Zhang, Effect of P2O5 and FetO on the viscosity and slag structure in steelmaking slags. Metallurgical and Materials Transactions B, 2015. 46(2): p. 758-765.
65.Seok, S.-H., S.-M. Jung, Y.-S. Lee, and D.-J. Min, Viscosity of highly basic slags. Isij International, 2007. 47(8): p. 1090-1096.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔