(3.235.245.219) 您好!臺灣時間:2021/05/07 22:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:錢品儒
研究生(外文):Pin-JuChien
論文名稱:製備三氧化鎢奈米顆粒@矽奈米結構於低溫感測二氧化氮氣體之研究
論文名稱(外文):Study of NO2 gas sensing at low temperature based on the incorporation of silicon nanostructures with tungsten trioxide nanoparticles
指導教授:陳嘉勻
指導教授(外文):Chia-Yun Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:100
中文關鍵詞:三氧化鎢金屬輔助化學蝕刻電場輔助氣體感測器
外文關鍵詞:SiliconWO3MaCEElectric field-assistedGas sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為製備可於室溫下量測NO2氣體之氣體感測器,選用自然界中擁有豐富含量之矽(P-type)與對NO2氣體具備良好選擇性之WO3材料複合,目標為透過此複合結構降低金屬半導體氣感元件操作溫度,因此在本研究中討論三氧化鎢@不同矽奈米結構上之氣感特性,討論不同形貌對氣感特性造成之影響。首先利用電場輔助於一般金屬輔助化學蝕刻上,可於短時間內快速製備垂直矽奈米線(silicon nanowires, SiNWs)陣列、奈米級的多孔矽以及垂直/傾斜矽奈米線,於施加偏壓+40 V時,蝕刻速率約可提升3.4 倍,並以實驗設計,驗證施加偏壓下對電洞擴散整流及陽極氧化反應的影響與機制,並透過SEM驗證其形貌與計算蝕刻速率。而在Si(111)基板上利用Au/Ag雙金屬催化劑於硝酸濃度0.6 M及溫度45 ℃下則可製備特殊彎曲矽奈米線與彎曲溝槽混合矽奈米結構並討論其形成機制及透過SEM驗證其形貌。為了測試能否於矽奈米結構上合成三氧化鎢複合結構,因此將不同pH質環境中的前驅液鎢酸以特殊水熱法合成於矽奈米線陣列上,分別可生成三氧化鎢顆粒@矽奈米線及三氧化鎢帶一水@矽奈米線,並透過SEM與XRD分析驗證其形貌與晶面,而經氣體感測後,兩者分別對3 ppm NO2及25 ppm Acetone具有較佳選擇性,室溫下響應度分別為1.18及1.72,而因本研究旨在量測室溫下之NO2氣體,故選擇前者三氧化鎢配方為後續研究參數。之後分別對WO3@SiNWs、WO3@porous Si及WO3@curved SiNWs三不同複合結構作SEM分析形貌及氣體感測,對目標氣體3 ppm NO2於室溫下響應值分別為1.18、1.017、1.252,得到WO3@curved SiNWs擁有對NO2氣體最佳選擇性。為提高響應度,透過氧電漿處理增加材料表面缺陷濃度並以XPS驗證,WO3@curved SiNWs在氧電漿處理(20 W,60 s)後,響應度在室溫下由1.252上升至3.49。進一步的,針對WO3@curved SiNWs進行氧電漿處理後量測其在室溫下短期及長期元件穩定性,在短期穩定性量測中,使用1 ppm NO2進行連續五次量測,量測結果響應度依序為1.216、1.153、1.144、1.135、1.093。而長期穩定性量測則仍然對3 ppm NO2 量測,量測結果響應度依序為3.49 (Day 1)、1.588 (Day 10)、1.235 (Day 20)、1.047 (Day 30)。
The sensing behavior of semiconductor gas sensor is usually based on the measurement of the resistance change caused by the gas molecules adsorbed on the material and reacts with the oxygen ions on the surface of the material to indicate their sensitivity (response) to a certain gas. In this study, the WO3 NPs@SiNWs, WO3 NPs@porous Si and WO3 NPs@curved SiNWs composite are prepared to detect 3 ppm NO2 gas at room temperature. WO3, an n-type material, has high selectivity for the detection of NO2 gas. The different morphology of silicon nanostructure was made by metal-assisted chemical etching (MaCE) and electric-field assisted MaCE (EMaCE). The mechanism of hole diffusion and the changes of silicon nanostructure morphology with or without applying bias are illustrated, and ability of controlling the formation of the nanostructures is demonstrated. In addition, the curved SiNWs can be prepared through Au/Ag co-catalyst and HNO3 etching. WO3 is synthesized on the silicon nanostructure through a novel hydrothermal method. After WO3@Si samples are prepared, samples will be treated with oxygen plasma to increase surface defect concentration for enhancing gas sensing response. Among the three samples mentioned above, WO3 NPs@curved SiNWs modified by oxygen plasma shows excellent response 3.49 to 3 ppm NO2 gas at room temperature.
摘要 II
Extended Abstract III
誌謝 IX
目錄 X
表目錄 XIII
圖目錄 XIII

第一章 緒論 1
1.1 前言 1
1.2 實驗目的 1
第二章 文獻回顧 3
2.1 矽奈米結構與製備方法 3
2.1.1 矽的結構與性質 3
2.1.2 金屬輔助H2O2 / HF 蝕刻 4
2.1.3 電場輔助 H2O2 / HF 蝕刻 4
2.1.4 金屬輔助HNO3 / HF 蝕刻 5
2.2 三氧化鎢結構與性質 5
2.3 氣體感測器簡介 5
2.3.1 半導體氣體感測器 6
2.3.2 電化學氣體感測器 6
2.3.3 觸媒燃燒型氣體感測器 7
2.3.4 紅外線型氣體感測器 7
2.3.5 石英晶體微量天平氣體感測器 7
2.4 氣體感測概論 7
2.4.1 氣體感測效能參數 7
2.4.2 氣體吸脫附理論 8
2.4.3 典型氣體感測模式 10
2.4.4 半導體式氣體感測器工作原理與機制 12
2.5 提升氣體感測效能 13
2.5.1 氣體感測器結構 14
2.5.2 P-N異質接面與通道狹窄化 15
2.5.3 氧電漿改質 16
第三章 儀器設備與實驗流程 18
3.1 研究流程圖 18
3.2 藥品與材料 18
3.3 實驗儀器 19
3.3.1 精密天平 (Precision Balances) 19
3.3.2 數位型電磁加熱攪拌機 (Heating Panel) 19
3.3.3 超音波震盪器 (Ultrasonic Cleaner) 19
3.3.4 高溫爐 (Muffle furnace) 20
3.3.5 氣體量測設備 20
3.4 實驗步驟與氣體量測方法 21
3.4.1 金屬輔助H2O2/HF蝕刻製備矽奈米線 (SiNWs) 21
3.4.2 電場/金屬輔助H2O2/HF蝕刻製備矽奈米線 21
3.4.3 電場/金屬輔助H2O2/HF蝕刻製備多孔矽奈米結構 (Porous Si) 22
3.4.4 金屬輔助HNO3/HF蝕刻製備彎曲矽奈米線 (Curved SiNWs) 23
3.4.5 矽奈米線疏化化學蝕刻 (chemical etching,CE) 23
3.4.6 製備三氧化鎢顆粒@矽奈米結構 24
3.4.7 氧電漿改質 25
3.4.8 氣體感測流程 26
3.5 材料分析儀器 27
3.5.1 X光薄膜繞射儀 (X-ray Diffractometer, XRD) 27
3.5.2 高解析場發射掃描式電子顯微鏡及能量散佈光譜儀 (High Resolution Scanning Electron Microscope & Energy Dispersive Spectrometer, HR-SEM & EDS) 28
3.5.3 拉曼光譜分析儀 (Raman Spectrometer) 29
3.5.4 紫外線-可見光分光光譜儀 (Uv-vis NIR Spectrometers) 30
3.5.5 X光光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 30
第四章 結果與討論 31
4.1 金屬輔助H2O2 / HF蝕刻 31
4.1.1 一般兩步驟蝕刻 31
4.1.2 電場輔助兩步驟蝕刻 32
4.2 金屬輔助HNO3 / HF蝕刻 (記得有銀/金沉積的圖) 41
4.2.1 Au/Ag 雙催化劑蝕刻 41
4.2.2 矽奈米線疏化化學蝕刻 49
4.3 三氧化鎢顆粒@矽奈米結構樣品分析 52
4.3.1 選定三氧化鎢奈米顆粒合成條件 52
4.3.2 三氧化鎢顆粒@矽奈米線形貌分析 61
4.3.3 三氧化鎢顆粒@多孔矽形貌分析 63
4.3.4 三氧化鎢顆粒@彎曲矽奈米線形貌分析 64
4.3.5 三氧化鎢顆粒@不同矽奈米結構氣體選擇性 66
4.4 三氧化鎢顆粒@彎曲矽奈米線於氧電漿改質後氣體感測特性分析 72
4.4.1 選定最佳氧電漿改質參數 72
4.4.2 選定最佳工作溫度 85
4.4.3 感測機制 87
4.4.4 元件短期穩定性測試 91
4.4.5 元件長期穩定性測試 92
第五章 結論 94

參考文獻 95
1.Seto, J.Y., The electrical properties of polycrystalline silicon films. Journal of Applied Physics,. 46(12): p. 5247-5254, 1975.
2.Pearson, G.L. and J. Bardeen, Electrical properties of pure silicon and silicon alloys containing boron and phosphorus. Physical Review, 75(5): p. 865, 1949.
3.Tsamis, C., A. Nassiopoulou, and A. Tserepi, Thermal properties of suspended porous silicon micro-hotplates for sensor applications. Sensors and Actuators B: Chemical, 95(1-3): p. 78-82, 2003.
4.Zhang, Y., et al., One-dimensional growth mechanism of crystalline silicon nanowires. Journal of Crystal Growth, 197(1-2): p. 136-140, 1999.
5.Tsakalakos, L., et al., Silicon nanowire solar cells. Applied physics letters, 91(23): p. 233117, 2007.
6.Agarwal, A., et al., Silicon nanowire sensor array using top–down CMOS technology. Sensors and Actuators A: Physical, 145: p. 207-213,2008.
7.Zeng, B., et al., Field emission of silicon nanowires grown on carbon cloth. Applied Physics Letters, 90(3): p. 033112, 2007.
8.Gao, C., et al., 22 nm silicon nanowire gas sensor fabricated by trilayer nanoimprint and wet etching. Microelectronic engineering, 87(5-8): p. 927-930, 2010.
9.Li, Y., et al., Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology. IEEE Electron Device Letters, 32(5): p. 674-676, 2011.
10.Yamazoe, N., New approaches for improving semiconductor gas sensors. Sensors and Actuators B: Chemical, 5(1-4): p. 7-19, 1991.
11.Cao, A., E.J. Sudhölter, and L.C. De Smet, Silicon nanowire‐based devices for gas-phase sensing. Sensors, 14(1): p. 245-271, 2014.
12.Wang, L., et al., ZnO nanorod gas sensor for ethanol detection. Sensors and Actuators B: Chemical, 162(1): p. 237-243, 2012.
13.Nguyen, H. and S.A. El-Safty, Meso-and macroporous Co3O4 nanorods for effective VOC gas sensors. The Journal of Physical Chemistry C, 115(17): p. 8466-8474, 2011.
14.Sadek, A.Z., et al., Characterization of ZnO Nanobelt-Based Gas Sensor for ${
m H} _ {2} $, ${
m NO} _ {2} $, and Hydrocarbon Sensing. IEEE Sensors Journal, 7(6): p. 919-924, 2007.
15.Yang, S., et al., High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sensors and Actuators B: Chemical, 226: p. 478-485, 2016.
16.Korotcenkov, G., et al., Grain size effects in sensor response of nanostructured SnO2-and In2O3-based conductometric thin film gas sensor. Critical Reviews in Solid State and Materials Sciences, 34(1-2): p. 1-17, 2009.
17.Xu, J., Q. Pan, and Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B: Chemical, 66(1-3): p. 277-279, 2000.
18.Ahn, M.-W., et al., Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Applied physics letters, 93(26): p. 263103, 2008.
19.Jimenez, I., et al., Crystalline structure, defects and gas sensor response to NO2 and H2S of tungsten trioxide nanopowders. Sensors and Actuators B: Chemical, 93(1-3): p. 475-485, 2003.
20.Moon, W.J., J.H. Yu, and G.M. Choi, Selective CO gas detection of SnO2–Zn2SnO4 composite gas sensor. Sensors and Actuators B: Chemical, 80(1): p. 21-27, 2001.
21.Van Hieu, N., L.T.B. Thuy, and N.D. Chien, Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite. Sensors and Actuators B: Chemical, 129(2): p. 888-895, 2008.
22.Colás, J.J., The Electro-Photonic Silicon Biosensor, in Dual-Mode Electro-photonic Silicon Biosensors, Springer. p. 59-93, 2017.
23.Misra, S., et al., High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires. Solar Energy Materials and Solar Cells, 118: p. 90-95, 2013.
24.Kong, T., et al., CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin I for acute myocardial infarction diagnosis. Biosensors and Bioelectronics, 34(1): p. 267-272, 2012.
25.Kolasinski, K.W., Silicon nanostructures from electroless electrochemical etching. Current Opinion in Solid State and Materials Science, 9(1-2): p. 73-83, 2005.
26.Chern, W., et al., Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays. Nano letters, 10(5): p. 1582-1588, 2010.
27.Yeom, J., et al., Decoupling diameter and pitch in Silicon nanowire arrays made by metal‐Assisted Chemical Etching. Advanced Functional Materials, 24(1): p. 106-116, 2014.
28.Liu, R., et al., Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching. Nanoscale research letters, 8(1): p. 1-8, 2013.
29.Schmidt, V., S. Senz, and U. Gösele, Diameter-dependent growth direction of epitaxial silicon nanowires. Nano letters, 5(5): p. 931-935, 2005.
30.Choi, W., et al., Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. Nano letters, 8(11): p. 3799-3802, 2008.
31.De Boor, J., et al., Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching. Nanotechnology, 21(9): p. 095302, 2010.
32.Li, X. and P. Bohn, Metal-assisted chemical etching in HF/H 2 O 2 produces porous silicon. Applied Physics Letters, 77(16): p. 2572-2574, 2000.
33.Chartier, C., S. Bastide, and C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF–H2O2. Electrochimica Acta, 53(17): p. 5509-5516, 2008.
34.Chen, C.-Y. and C.-P. Wong, Morphological transition of Si surfaces from solid nanowires to porous nanobelts at room temperature. Chemical Communications, 49(66): p. 7295-7297, 2013.
35.Li, L., X. Zhao, and C.-P. Wong, Deep etching of single-and polycrystalline silicon with high speed, high aspect ratio, high uniformity, and 3D complexity by electric bias-attenuated metal-assisted chemical etching (EMaCE). ACS applied materials & interfaces, 6(19): p. 16782-16791, 2014.
36.Robbins, H. and B. Schwartz, Chemical Etching of Silicon: I. The System, and. Journal of the electrochemical society, 106(6): p. 505, 1959.
37.Chen, C.-Y. and C.-P. Wong, Unveiling the shape-diversified silicon nanowires made by HF/HNO 3 isotropic etching with the assistance of silver. Nanoscale, 7(3): p. 1216-1223, 2015.
38.Hochbaum, A., R.D. Chen, and L. RD, W. Garnett, EC Najarian, M. Majumdar, A., and Yang, P. Nature, 451: p. 163-167, 2008.
39.Buch, V.R., A.K. Chawla, and S.K. Rawal, Review on electrochromic property for WO3 thin films using different deposition techniques. Materials Today: Proceedings, 3(6): p. 1429-1437, 2016.
40.Wang, S., et al., Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties. Journal of Materials Chemistry C, 6(2): p. 191-212, 2018.
41.Dong, P., et al., WO 3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environmental Science: Nano, 4(3): p. 539-557, 2017.
42.Lee, D.-S., et al., Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor. Sensors and Actuators B: Chemical, 60(1): p. 57-63, 1999.
43.Hübner, M., et al., CO sensing mechanism with WO3 based gas sensors. Sensors and Actuators B: Chemical, 151(1): p. 103-106, 2010.
44.Lin, H.-M., et al., Nanocrystalline WO3-based H2S sensors. Sensors and Actuators B: Chemical, 22(1): p. 63-68, 1994.
45.Shen, J.-Y., et al., Highly enhanced acetone sensing performance of porous C-doped WO3 hollow spheres by carbon spheres as templates. Sensors and Actuators B: Chemical, 239: p. 597-607, 2017.
46.El-Nahass, M., et al., Electrochromic properties of amorphous and crystalline WO3 thin films prepared by thermal evaporation technique. Materials Science in Semiconductor Processing, 29: p. 201-205, 2015.
47.Vernardou, D., et al., Electrochemical properties of amorphous WO3 coatings grown on polycarbonate by aerosol-assisted CVD. Electrochimica acta, 65: p. 185-189, 2012.
48.Ramana, C., et al., Structural stability and phase transitions in WO3 thin films. The Journal of Physical Chemistry B, 110(21): p. 10430-10435, 2006.
49.Bendahan, M., et al., Characterization of ozone sensors based on WO3 reactively sputtered films: influence of O2 concentration in the sputtering gas, and working temperature. Sensors and actuators B: Chemical, 100(3): p. 320-324, 2004.
50.Ham, D.J., et al., Hydrothermal synthesis of monoclinic WO3 nanoplates and nanorods used as an electrocatalyst for hydrogen evolution reactions from water. Chemical Engineering Journal, 165(1): p. 365-369, 2010.
51.Hernandez-Uresti, D.B., et al., Characterization and photocatalytic properties of hexagonal and monoclinic WO3 prepared via microwave-assisted hydrothermal synthesis. Ceramics International, 40(3): p. 4767-4775, 2014.
52.Bai, S., et al., Low-temperature hydrothermal synthesis of WO 3 nanorods and their sensing properties for NO 2. Journal of Materials Chemistry, 22(25): p. 12643-12650, 2012.
53.Ahmadi, M., R. Younesi, and M.J. Guinel, Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure. Journal of Materials Research, 29(13): p. 1424-1430, 2014.
54.Dey, A., Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B, 229: p. 206-217, 2018.
55.Yamazoe, N., et al., Interactions of tin oxide surface with O2, H2O and H2. Surface Science, 86: p. 335-344, 1979.
56.Yamazoe, N., Y. Kurokawa, and T. Seiyama, Effects of additives on semiconductor gas sensors. Sensors and Actuators, 4: p. 283-289, 1983.
57.Madou, M.J. and S.R. Morrison, Chemical sensing with solid state devices: Elsevier, 2012.
58.Franke, M.E., T.J. Koplin, and U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? small, 2(1): p. 36-50, 2006.
59.Grätzel, M., Photoelectrochemical cells, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific. p. 26-32, 2011.
60.Carpenter, M.A., S. Mathur, and A. Kolmakov, Metal oxide nanomaterials for chemical sensors: Springer Science & Business Media, 2012.
61.Gurlo, A., Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. ChemPhysChem, 7(10): p. 2041-2052, 2006.
62.Miller, D.R., S.A. Akbar, and P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors and Actuators B: Chemical, 204: p. 250-272, 2014.
63.Li, N., et al., A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: synthesis, sensing performance and mechanism. Sensors and Actuators B: Chemical, 294: p. 106-115, 2019.
64.Li, S., et al., The transparent SnO/ZnO quantum dots/SnO2 pn junction towards the enhancement of photovoltaic conversion. Chemical Engineering Journal, 366: p. 305-312, 2019.
65.Haviar, S., et al., Hydrogen gas sensing properties of WO3 sputter-deposited thin films enhanced by on-top deposited CuO nanoclusters. International Journal of Hydrogen Energy, 43(50): p. 22756-22764, 2018.
66.Zhao, Y., et al., From Geometry to Activity: A Quantitative Analysis of WO3/Si Micropillar Arrays for Photoelectrochemical Water Splitting. Advanced Functional Materials, 30(13): p. 1909157, 2020.
67.Mashock, M., et al., Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p–n junctions on their surfaces. ACS applied materials & interfaces, 4(8): p. 4192-4199, 2012.
68.Ra, H.-W. and Y.-H. Im, Effect of chemically reactive species on properties of ZnO nanowires exposed to oxygen and hydrogen plasma. Nanotechnology, 19(48): p. 485710, 2008.
69.Nagatomo, I., et al., Enhancement of Gas Response of ZnO Micro-nano Structured Films through O2 Plasma Treatment. IEEJ Transactions on Sensors and Micromachines, 129(9): p. 307-311, 2009.
70.Du, Q., et al., Enhancing gas sensing performances and sensing mechanism at atomic and molecule level of WO3 nanoparticles by hydrogenation. Sensors and Actuators B: Chemical, 273: p. 1786-1793, 2018.
71.An, X., et al., WO 3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO 2 gas sensing. Journal of Materials Chemistry, 22(17): p. 8525-8531, 2012.
72.Huang, Z., H. Fang, and J. Zhu, Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Advanced materials, 19(5): p. 744-748, 2007.
73.Lai, Y.-C., et al., Extending Absorption Edge through the Hybrid Resonator-Based Absorber with Wideband and Near-Perfect Absorption in Visible Region. Materials, 13(6): p. 1470, 2020.
74.Chen, C.-Y., et al., Passivating silicon-based hybrid solar cells through tuning PbI2 content of perovskite coatings. Applied Surface Science, 511: p. 145541, 2020.
75.Naffeti, M., et al., Elucidating the Effect of Etching Time Key-Parameter toward Optically and Electrically-Active Silicon Nanowires. Nanomaterials, 10(3): p. 404, 2020.
76.Zhang, H., et al., Template-free facile preparation of monoclinic WO3 nanoplates and their high photocatalytic activities. Applied surface science, 305: p. 274-280, 2014.
77.Hu, W.-H., et al., Facile synthesis of highly dispersed WO3· H2O and WO3 nanoplates for electrocatalytic hydrogen evolution. Journal of Nanomaterials, 2015.
78.Li, J., et al., A full-sunlight-driven photocatalyst with super long-persistent energy storage ability. Scientific reports, 3: p. 2409, 2013.
79.Vasilopoulou, M., et al., The influence of hydrogenation and oxygen vacancies on molybdenum oxides work function and gap states for application in organic optoelectronics. Journal of the American Chemical Society, 134(39): p. 16178-16187, 2012.
80.Rahimnejad, S., et al., Enhancement of the photocatalytic efficiency of WO3 nanoparticles via hydrogen plasma treatment. Materials Research Express, 1(4): p. 045044, 2014.
81.Zhang, W., et al., Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO2 gas sensor. Journal of Alloys and Compounds, 679: p. 391-399, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔