(3.236.118.225) 您好!臺灣時間:2021/05/16 11:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張哲豪
研究生(外文):Che-HaoChang
論文名稱:鍍金鈀層精細銅導線氯化及通電破壞機制研究
論文名稱(外文):A Study on Chlorination and Electrical Current Induced Failure Mechanism of Fine Au/Pd-Coated Cu wires
指導教授:洪飛義洪飛義引用關係呂傳盛呂傳盛引用關係
指導教授(外文):Fei-Yi HungTruan-Sheng Lui
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:101
中文關鍵詞:銅導線鍍層打線接合氯化通電循環
外文關鍵詞:copper wirecoatingwire bondingpower cycling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,在金價持續上漲的影響下,電子封裝產業逐漸以銅基與銀基導線作為替代金導線的材料。銀線易與環境中的氧、硫、氯反應,造成濕氣腐蝕。此外,銀線易在界面形成過厚且硬脆的Ag2Al與Ag3Al等介金屬化合物,除了增加阻抗外,硬脆性也會造成接合可靠度下降。同時,銀線經過長時間使用會有嚴重的電遷移問題,導致電阻提高與機械性質劣化,甚至斷裂。本研究以銅基導線為主要材料,並將鍍鈀銅線表面電鍍一層厚度約10 nm的金薄層,製成18 μm電鍍金鈀層銅導線 (Au/Pd-Coated Cu wires, APCC wire)以有效增加銅線抗腐蝕性及改善銅線易氧化缺點,並藉由氯化與通電循環試驗,探討線材在實際應用中的可靠度問題,同時以三種不同晶粒徑之線材,探討晶粒尺寸在試驗中之效應,並分析其劣化機制。
氯化試驗方面,APCC導線會在長時間氯化後於表面生成細微孔洞,機械性質方面,由於表面孔洞會造成拉伸強度與延性下降,最終導致線材發生脆性破裂;電性方面,則因氯化僅於表面生成細小孔洞,故對電子之主要通路影響不大,並無明顯電阻上升。在銲點部份,第一銲點在較短的氯化時間便會從接合面處剝落,主要機制是氯離子侵蝕鋁墊,並露出底部矽基板。
通電循環試驗部份,在不同循環次數下,導線表面會產生氧化銅丘;隨著次數增加,氧化銅丘會成長為氧化銅層,並全面性包覆銅線材;最終氧化銅層上會長出奈米銅線並與線材剝離。同時,導線晶粒受通電所誘發之焦耳熱效應影響,隨著循環次數增加而逐漸上升,線徑也因銅原子擴散至表面產生氧化而逐漸縮小。當晶粒成長至線徑大小時,由於該位置強度較低,造成線材因通電循環所產生的疲勞效應而斷裂失效。APCC導線由於鍍層作用,確能有效提高線材的抗氯化能力,並針對線材與銲點進行解析,了解其氯化後之劣化機制;通電循環部份則解析不同循環次數下,微觀組織的演變與失效機制,相關成果可提供線材封裝應用製程參考。
In this research, gold and palladium layers are electroplated on the surface of copper wire as Au/Pd-coated wires (APCC wire) to improve corrosion resistance and to enhance oxidation resistance. Chlorination test and power cycling test are conducted to discuss the difficulties in practical application and to reveal their deterioration mechanism. At the same time, three kinds of APCC wires with different grain sizes are used to explore the effect of grain size in the experiment.
In chlorination test, both tensile strength and elongation decrease since chloride ions attack the surface of wires. However, if comparing APCC wires to those of Pd-coated and pure copper, the coating layer still has a significant impact on the improvement of corrosion resistance.
In power cycling test, voids appear on the interface of Pd layer and copper matrix. As the number of cycle increases, grain growth are induced by Joule’s heat, which is produced by high current density. Besides, repeated thermal expansion effect results in fatigue which makes the whole system fail.
中文摘要................................................ I
Extended Abstract.................................... . III
誌謝................................................... XVI
目錄................................................... XIX
表目錄............................................... XXIII
圖目錄................................................ XXIV
第一章 前言............................................. 1
第二章 文獻回顧......................................... 3
2-1 打線接合製程...................................... 3
2-1-1 接合工具...................................... 4
2-1-2 接合技術...................................... 5
2-2 放電結球製程...................................... 6
2-2-1 成球外觀與線材微觀組織......................... 7
2-3 影響接合強度之因素................................. 8
2-4 接合導線材料...................................... 9
2-4-1 鋁線.........................................10
2-4-2 金線.........................................11
2-4-3 銀基導線......................................11
2-4-4 銅基導線......................................12
2-4-5 電鍍金鈀雙層銅導線.............................13
2-5 氯化試驗..........................................14
2-6 通電試驗..........................................14
2-7 研究目的..........................................15
第三章 實驗步驟與方法....................................21
3-1 放電結球與打線接合.................................21
3-2 表面形貌與微觀組織觀察.............................22
3-3 I-V曲線電性量測...................................22
3-3-1 線材I-V曲線電性量測...........................22
3-3-2 接合I-V曲線電性量測...........................23
3-3-3 通電拉伸試驗..................................23
3-4 拉伸試驗..........................................24
3-4-1 線材拉伸試驗..................................24
3-4-2 頸部拉伸試驗..................................24
3-4-3 第一銲點拉伸試驗..............................25
3-5 氯化試驗..........................................25
3-5-1 線材氯化試驗..................................25
3-5-2 第一銲點氯化試驗..............................26
3-6 通電循環試驗......................................26
3-6-1 線材通電循環試驗..............................26
3-6-2 第一銲點通電循環試驗...........................27
第四章 結果與討論.......................................34
4-1 鍍金鈀層銅導線微觀組織特性.........................34
4-2 氯化對鍍金鈀層銅導線之影響.........................34
4-2-1 氯化後線材拉伸性質調查.........................34
4-2-2 氯化後線材拉伸破斷形貌特徵.....................35
4-2-3 氯化後線材I-V曲線量測..........................36
4-2-4 氯化後第一銲點之接合界面解析....................36
4-3 通電對鍍金鈀層銅導線組織與拉伸性質之影響.............37
4-3-1 不同通電循環次數下表面形貌與微觀組織比較.........38
4-3-2 通電拉伸後線材表面形貌與微觀組織分析............40
4-4 放電結球特性分析..................................41
4-4-1 結球外觀與微觀組織.............................41
4-4-2 鍍金鈀層銅導線球部元素分佈.....................41
4-4-3 鍍金鈀層銅導線接合強度分析.....................42
4-5 通電循環對鍍金鈀層銅導線打線接合性質探討.............42
4-5-1 第一銲點經不同通電參數之通電循環試驗後I-V曲線量測43
4-5-2 第一銲點通電循環試驗後I-V曲線量.................44
4-5-3 第二銲點通電循環試驗後I-V曲線量測...............46
4-6 綜合討論..........................................47
4-6-1 氯化機制......................................47
4-6-2 通電循環機制..................................47
4-6-3 通電拉伸機制..................................48
4-6-4 通電循環後之電性變化...........................48
第五章 結論.............................................93
參考文獻................................................95

[1]G. G. Harman, Wire Bonding in Microelectronics, 3rd ed. McGraw-Hill, 2010.
[2]Y. H. Tian, C. Q. Wang, I. Lum, M. Mayer, J. P. Jung and Y. Zhou, Investigation of Ultrasonic Copper Wire Wedge Bonding on Au/Ni Plated Cu Substrates at Ambient Temperature, Journal of Materials Processing Technology, 208(1-3), 179-186, 2008.
[3]J. L. Chen and Y. C. Lin, A New Approach in Free Air Ball Formation Process Parameters Analysis, IEEE Transactions on Electronics Packaging Manufacturing, 23(2), 116-122, 2000.
[4]J. Onuki, M. Koizumi, H. Suzuki and I. Araki, Investigation on Enhancement of Copper Ball Bonds During Thermal Cycle Testing, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 14(2), 392-395, 1991.
[5]J. Krzanowski and N. Murdeshwar, Deformation and Bonding Processes in Aluminum Ultrasonic Wire Wedge Bonding, Journal of Electronic Materials, 19(9), 919-928, 1990.
[6]I. Qin, A. Shah, C. Huynh and M. Meyer, Effect of Process Parameters on Pad Damage during Au and Cu Ball Bonding Processes, Electronics Packaging Technology Conference (EPTC) on IEEE, 573-578, 2009.
[7]B. Langenecker, Effects of Ultrasound on Deformation Characteristics of Metals, IEEE Transactions on Sonics and Ultrasonics, 13(1), 1-8, 1966.

[8]S. Murali, N. Srikanth, Y. M. Wong and C. J. Vath, Fundamentals of Thermo-sonic Copper Wire Bonding in Microelectronics Packaging, Journal of Materials Science, 42(2), 615-623, 2007.
[9]M. L. Minges, Electronic Materials Handbook: Packaging, ASM International, 1, 225, 1989.
[10]A. Pequegnat, H. J. Kim, M. Mayer, Y. Zhou, J. Persic and J. T. Moon, Effect of Gas Type and Flow Rate on Cu Free Air Ball Formation in Thermosonic Wire Bonding, Microelectronics Reliability, 51, 43-52, 2011.
[11]S. Kumar, H. Kwon, Y. I. Heo, S. H. Kim, J. S. Hwang and J. T. Moon, Thermosonic Ball Bonding Behavior and Reliability Study of Ag Alloy Wire, Electronic Packaging Technology Conference (EPTC) on IEEE, 254-259, 2013.
[12]R. Guo, L. Gao, D. Mao, M. Li, X. Wang, Z. Lv and H. Chiu, Study of Free Air Ball Formation in Ag-8Au-3Pd Alloy Wire Bonding, Microelectronics Reliability, 54, 2550-2554, 2014.
[13]S. Murali, N. Srikanth and C. J. Vath, Grains, Deformation Substructures, and Slip Bands Observed in Thermosonic Copper Ball Bonding, Materials Characterization, 50(1), 39-50, 2003.
[14]S. Kaimori, T. Nonaka and A. Mizoguchi, The Development of Cu Bonding Wire with Oxidation-Resistant Metal Coating, IEEE Transactions on Advanced Packaging, 29(2), 227-231, 2006.
[15]林宜璋,不同退火條件之銅導線經放電結球前後之機械性質與織構分析,國立成功大學材料科學與工程系碩士論文,民國九十六年。
[16]C. J. Hang, W. H. Song, I. Lum, M. Mayer, Y. Zhou, C. Q. Wang, J. T. Moon and J. Persic, Effect of Electronic Flame Off Parameters on Copper Bonding Wire: Free-Air Ball Deformability, Heat Affected Zone Length, Heat Affected Zone Breaking Force, Microelectronic Engineering, 86, 2094-2103, 2009.
[17]L. J. Kai, L. Y. Hung, L. W. Wu, M. Y. Chiang, D. S. Jiang, C. M. Huang and Y. P. Wang, Silver Alloy Wire Bonding, Electronic Components and Technology Conference (ECTC) on IEEE, 1163-1168, 2012.
[18]C. Lu, Review on silver wire bonding, Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2013 8th International, 226-229, 2013.
[19]N. Noolu, N. Murdeshwar, K. Ely, J. Lippold, and W. Baeslack III, Phase Transformation in Thermally Exposed Au-Al Ball Bonds , Journal of Electronic Materials, 33, 340-352, 2004.
[20]H. Xu, C. Liu, V. V. Silberschmidtb, S. S. Pramanac, T. J. White, Z. Chen and V. L. Acoff, Intermetallic Phase Transformations in Au–Al Wire Bonds, Intermetallics, 19, 1808-1816, 2011.
[21]C. D. Breach and F. Wulff, New Observations on Intermetallic Compound Formation in Gold Ball Bonds: General Growth Patterns and Identification of Two Forms of Au4Al, Microelectronics Reliability, 44, 973-981, 2004.
[22]M. Guerdane, Self-Diffusion in Intermetallic Au4Al: Molecular Dynamics Study Down to Temperatures Relevant to Wire Bonding, Computational Materials Science, 29, 13-23, 2017.
[23]B. März, A. Graff, R. Klengel, and M. Petzold, Interface Microstructure Effects in Au Thermosonic Ball Bonding Contacts by High Reliability Wire Materials, Microelectronics Reliability, 54, 2000-2005, 2014.
[24]B. Valdez, M. Schorr, R. Zlatev, M. Carrillo, M. Stoytcheva, L. Alvarez, A. Eliezer and N. Rosas, Corrosion Control in Industry, Environmental and Industrial Corrosion, Practical and Theoretical Aspects, 25-27, 2012.
[25]H. W. Hsueh, F. Y. Hung, T. S. Lui, L. H. Chen and K. J. Chen, Intermetallic Phase on the Interface of Ag-Au-Pd/Al Structure, Advances in Materials Science and Engineering, 925768, 2014.
[26]K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho and J. T. Moon, Reliability Study of Low Cost Alternative Ag bonding Wire with Various Bond Pad Materials, Electronics Packaging Technology Conference (EPTC) on IEEE, 851-857, 2009.
[27]E. Sancaktar, P. Rajput and A. Khanolkar, Correlation of Silver Migration to the Pull Out Strength of Silver Wire Embedded in an Adhesive Matrix, IEEE Transactions on Components and Packaging Technologies, 28(4), 771-780, 2005.
[28]陳眉瑜,Ø20µm Ag-2Pd合金導線放電結球特性及打線接合界面通電效應探討,成功大學材料科學及工程學系碩士論文,民國一百零二年。
[29]蔡咏真,微細Ag-2Pd-0.2Au合金導線放電結球特性及接合界面通電與熱效應探討,成功大學材料科學及工程學系碩士論文,民國一百零四年。
[30]W. Y. Zhou, H. Y. Pei, J. Q. Luo, Y. J. Wu, J. L. Chen, F. F. Kangand A. H. Yang, Influence of Pd content on microstructure and performance of Au-coated Ag alloy wire, Journal of Materials Science: Materials in Electronics, 31, 6241-6247, 2020.
[31]C. Lu, The Challenges of Copper Wire Bonding, International Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT) on IEEE, 1-4, 2010.
[32]C. P. Liu, S. J. Chang, Y. F. Liu and J. Su, Corrosion-induced degradation and its mechanism study of Cu–Al interface for Cu-wire bonding under HAST conditions, Journal of Alloys and Compounds, 825, 154046, 2020
[33]S. Kaimori, T. Nonaka, and A. Mizoguchi, The Development of Cu Bonding Wire with Oxidation-Resistant Metal Coating, IEEE Transactions on Advanced Packaging, 29, 227-231, 2006.
[34]C. Y. Chang, F. Y. Hung, and T. S. Lui, Mechanical and Electrical Properties of Palladium-Coated Copper Wires with Flash Gold, Journal of Electronic Materials, 1-8, 2017.
[35]B. H Jung, B. K. Yu, S. H. Kim, J. T. Moon, and S. J. Hong, Effects of Pd Distribution at Free Air Ball in Pd Coated Cu Wire, Electronics Packaging Technology Conference (EPTC) on IEEE, 1-5, 2017.
[36]Y. Wu, K. N. Subramanian, S. C. Barton and A. Lee, Electrochemical Studies of Pd-Doped Cu and Pd-Doped Cu-Al Intermetallics for Understanding Corrosion Behavior in Wire-Bonding Packages, Microelectronics Reliability, 78, 355-361, 2017.
[37]N. Srikanth, J. Premkumar, M. Sivakumar, Y. M. Wong and C. J. Vath, Effect of Wire Purity on Copper Wire Bonding, Electronics Packaging Technology Conference (EPTC) on IEEE, 755-759, 2007.
[38]Z. W. Zhong, H. M. Ho, Y. C. Tan, W. C. Tan, H. M. Goh, B. H. Toh, and J. Tan, Study of Factors Affecting the Hardness of Ball Bonds in Copper Wire Bonding, Microelectronic Engineering, 84(2), 368-374, 2007.
[39]R. R. Keller, R. H. Geiss, Y. W. Cheng and D. T. Read Microstructure evolution during electric current induced thermomechanical fatigue of interconnects, Materials Research Society Conference, 863, 295-300, 2005.
[40]H. W. Hsueh, F. Y. Hung and T. S. Lui, A Study on Electromigration-Inducing Intergranular Fracture of Fine Silver Alloy Wires, Applied Physics Letters, 110, 031902, 2017.
[41]C. C. Ho, K. J. Chen, F. Y. Hung and T. S. Lui, Study of electrical fatigue test in gold-coated silver-4 wt. % palladium bonding wire, Microelectronics Reliability, 103, 113502, 2019.
[42]T. H. Chuang, H. J. Lin, C. H. Chuang, C. H. Tsai, J. D. Lee and H. H. Tsai, Durability to electromigration of an annealing-twinned Ag-4Pd alloy wire under current stressing, Metallurgical and Materials Transactions A, 45(12), 5574-5583, 2014.
[43]Y. H. Wu, F. Y. Hung, T. S. Lui and K. J. Chen, Study of wire bonding reliability of Ag-Pd-Au alloy wire with flash-gold after chlorination and sulfidation, Microelectronics Reliability, 99, 186-196, 2019.
[44]Q. Huang, C. M. Lilley, R. Divan, An in situ investigation of electromigration in Cu nanowires, Nanotechnology, 20(7), 075706, 2009.
[45]K. N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects, Journal of applied physics, 94(9), 5451-5473, 2003.
[46]蘇昱豪,熱擴散微細鍍鈀銅導線之組織特性及放電結球機制探討,成功大學材料科學及工程學系碩士論文,民國一百零三年。
[47]M. Chen, Y. Yue, & Y. Ju, Growth of metal and metal oxide nanowires driven by the stress-induced migration, Journal of Applied Physics, 111(10), 104305, 2012.
[48]H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen, and V. L. Acoff, Behavior of aluminum oxide, intermetallics and voids in Cu–Al wire bonds, Acta Materialia, 59(14), 5661-5673, 2011.
[49]T. H. Yang, Y. M. Lin and F. Y. Ouyang, Joule-Heating-Induced Damage in Cu-Al Wedge Bonds Under Current Stressing, Journal of electronic materials, 43(1), 270-276, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top