(3.235.245.219) 您好!臺灣時間:2021/05/07 21:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:方培丞
研究生(外文):Pei-ChengFang
論文名稱:鋅氧化層/鋅量子點作為氧化鋅薄膜成長在矽(111)之晶種層與緩衝層的效應
論文名稱(外文):The effect of the buffer layer and seed layer of Zn oxide shell/Zn dot on ZnO thin film grown on Si(111)
指導教授:羅光耀
指導教授(外文):Kuang-Yao Lo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:95
中文關鍵詞:晶種層緩衝層二次諧波254nm紫外光與臭氧鋅量子點氧化鋅薄膜
外文關鍵詞:ZnO/Zn quantum dotsseed layer and buffer layerZnO filmozone and UV254nmsecond harmonic generation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要為利用濺鍍的方式成長鋅量子點做為晶種層與緩衝層,之後進行成長氧化鋅薄膜以達到較好的薄膜品質。由於晶格匹配問題,成長薄膜時通常無法直接成長在基板上,需要先成長緩衝層後,才能成長薄膜,然而緩衝層厚度通常為100nm,因此有效減少緩衝層厚度並成長出較完好的薄膜品質為重要課題。
氧化鋅做為氧化物半導體,其奈米結構是一種極好的選擇,因為(002)面是最低形成能量平面並且容易形成奈米結構表面,此面為3m對稱結構。本實驗在磁控射頻系統高真空(3×10-6 torr)下進行,控制系統上氬氫氣流量比例、外加偏壓、基板溫度、成長時間等條件。在Si(111)基板上成長出結構完整但表面分布與大小不同的鋅奈米顆粒樣品進行不同氧化實驗,再成長氧化鋅薄膜。在鋅量子點的氧化程序中,除了純通氧氣的部分,還有通入臭氧(O3)以及加入UV254nm紫外光的不同狀況來探討鋅量子點上氧化層的品質。藉由鋅量子點同時做為晶種層及緩衝層的角色,使得成長完之氧化鋅薄膜能夠具有較好的3m表面對稱結構,並利用二次諧波系統(SHG system)進行觀測,以辨別不同鋅量子點氧化條件下成長出來的氧化鋅薄膜其結構對稱性。另外還藉由同步輻射XRD進行觀測薄膜及量子點表面晶體走向,並用SEM觀測表面形貌,與二次諧波數據進行比較,研究結果能提供成長氧化鋅薄膜時,使用特定條件下的鋅量子點,做為晶種層及緩衝層。
The RF-sputtering was been used to grow high-quality ZnO thin film with Zn quantum dots as seed layer and buffer layer. As the problem of the lattice mismatch, the deposited thin film usually need a buffer layer between thin film and substrate to reach the requirement of high quality. However, the thickness of buffer layer was usually over 100nm. With the rapid development of semiconductor, the effectively method to reduce thickness and grow the high-quality thin film were quite important.
In this work, the process of grown Zn quantum dots was in high vacuum pressure (3×10-6 torr) on Si(111) surface, the size and uniformity of Zn dots grown on Si(111) were performed by well controlling growth temperature, deposition time, power and H2 flow. After the growth the Zn quantum dots, the different oxidation of Zn quantum dots were be imported, then the ZnO film were deposited on Zn quantum dots. There are four oxidation condition in the Zn quantum dots oxidation. The Zn quantum were be controlled by with and without oxidation, different oxidation gas, different O3 pressure with UV254nm illuminated, different O3 exposed time with UV254nm illuminated. Besides, Zn quantum dots were not only buffer layer but also seed layer, which were enhanced the ZnO quality with better 3m surface symmetry. To confirm the quality of ZnO thin film and the influence of ZnO shell/Zn/dots, second harmonic generation (SHG) system were been used to observed the crystal structure symmetry. The crystal orientation of ZnO thin film and Zn dots were inspected by synchrotron XRD. For the results, the quality and symmetry of ZnO thin film were be enhanced by mean of uniform Zn quantum dots as seed layer and buffer layer with specific oxidation condition.
摘要------------------------------------------------------------------------------------------------------2
英文摘要------------------------------------------------------------------------------------------------3
致謝-----------------------------------------------------------------------------------------------------9
目錄----------------------------------------------------------------------------------------------------10
圖目錄------------------------------------------------------------------------------------------------14
表目錄------------------------------------------------------------------------------------------------18
第一章 介紹------------------------------------------------------------------------------------------19
第二章 晶種層與緩衝層對於薄膜成長的影響------------------------------------------------21
2.1基板與薄膜的晶格常數匹配--------------------------------------------------------21
2.1.1層狀成長( Frank-van der Merwe mode)--------------------------------------22
2.1.2島狀成長( Volmer-Weber mode)-----------------------------------------------22
2.1.3混合成長(Stranski-Krastanov mode)------------------------------------------23
2.1.4磊晶與基板之晶格匹配---------------------------------------------------------23
2.2緩衝層對於薄膜成長的影響--------------------------------------------------------26
2.3晶種層對於薄膜成長的影響--------------------------------------------------------28
2.4鋅氧化層在鋅量子點成長的方式--------------------------------------------------28
2.4.1磁控濺鍍法------------------------------------------------------------------------28
2.4.2金屬鋅量子點成長機制---------------------------------------------------------31
2.4.3 Cabrera Mott 理論---------------------------------------------------------------33
2.4.4鋅量子點氧化機制---------------------------------------------------------------36
2.4.5氧化後之鋅量子點利用氧離子修補表面-----------------------------------38
2.5鋅氧化層在鋅量子點對於鋅薄膜成長的角色-----------------------------------39
第三章 二次諧波及訊號處理---------------------------------------------------------------------41
3.1反射二次諧波分析機制--------------------------------------------------------------41
3.1.1非線性光學------------------------------------------------------------------------41
3.1.2二次諧波--------------------------------------------------------------------------43
3.1.3鋅量子點二次諧波訊號--------------------------------------------------------45
3.1.4氧化鋅薄膜二次諧波訊號-----------------------------------------------------47
3.2 RSHG訊號分析機制-----------------------------------------------------------------49
3.2.1 RSHG訊號之濾波---------------------------------------------------------------49
3.2.2 Labview RSHG-360擬合分析-------------------------------------------------52
第四章 製程及量測系統---------------------------------------------------------------------------54
4.1 Silicon 基板製備----------------------------------------------------------------------54
4.2 Zn quantum dot製程------------------------------------------------------------------54
4.2.1 RF-magnetron sputtering 成長 Zn quantum dot----------------------------54
4.2.2鋅量子點氧化反應--------------------------------------------------------------55
4.3 ZnO film 製程-------------------------------------------------------------------------56
4.3.1 RF-magnetron sputtering 成長 film------------------------------------------56
4.3.2以Zn quantum dot buffer layer 成長film------------------------------------58
4.4氣體系統--------------------------------------------------------------------------------58
4.5反射式二次諧波系統In-site (RSHG)----------------------------------------------59
4.5.1光學系統---------------------------------------------------------------------------60
4.5.2光學系統架設---------------------------------------------------------------------60
4.6輔助量測系統--------------------------------------------------------------------------61
4.6.1掃描式電子顯微鏡(SEM)------------------------------------------------------61
4.6.2同步輻射光源X-ray繞射系統(General X-ray Diffraction)---------------62
第五章 結果與討論---------------------------------------------------------------------------------63
5.1在Silicon基板上成長鋅量子點----------------------------------------------------63
5.1.1 SEM下鋅量子點的結構差異--------------------------------------------------63
5.1.2 XRD量測下的晶格差異--------------------------------------------------------64
5.1.3反射式二次諧波(RSHG)的表現-----------------------------------------------65
5.1.4不同溫度成長鋅量子點表面均勻度及O2氧化影響討論----------------66
5.2在Silicon基板上成長氧化鋅薄膜-------------------------------------------------67
5.2.1反射式二次諧波(RSHG)的表現-----------------------------------------------67
5.2.2 SEM下氧化鋅的結構差異-----------------------------------------------------69
5.2.3不同成長時間對氧化鋅薄膜影響---------------------------------------------70
5.3不同鋅量子點均勻度及氧化前後成長薄膜--------------------------------------70
5.3.1反射式二次諧波(RSHG)的表現-----------------------------------------------71
5.3.2 XRD量測下的差異--------------------------------------------------------------73
5.3.3 SEM下的薄膜表面差異--------------------------------------------------------74
5.3.4不同均勻度與氧化與否對薄膜影響------------------------------------------75
5.4均勻量子點改變氧化過程後成長薄膜--------------------------------------------75
5.4.1反射式二次諧波(RSHG)的表現-----------------------------------------------76
5.4.2 XRD量測下的差異--------------------------------------------------------------78
5.4.3 SEM下的表面差異--------------------------------------------------------------79
5.4.4不同鋅量子點氧化條件下之薄膜差別---------------------------------------80
5.5均勻鋅量子點控制修補表面之臭氧濃度成長薄膜-----------------------------81
5.5.1反射式二次諧波(RSHG)的表現-----------------------------------------------81
5.5.2 XRD量測下的差異--------------------------------------------------------------82
5.5.3 SEM下的表面差異--------------------------------------------------------------84
5.5.4不同濃度臭氧修補表面後對薄膜影響---------------------------------------85
5.6均勻鋅量子點控制修補表面之曝氣體時間成長薄膜--------------------------85
5.6.1反射式二次諧波(RSHG)的表現-----------------------------------------------85
5.6.2 XRD量測下的差異--------------------------------------------------------------87
5.6.3 SEM下的表面差異--------------------------------------------------------------89
5.6.4不同時間下濃度200mtorr臭氧修補表面後對薄膜影響-----------------90
5.6.5鋅量子點經過臭氧及UV254照射後形成緩衝層與晶種層的效應-----90
結論----------------------------------------------------------------------------------------------------92
參考文獻----------------------------------------------------------------------------------------------93
[1] A. Tsukazaki, M. Kubota, A. Ohtomo, T.Onuma, K. Ohtani, H. Ohno, S. F. Chichibu, M. Kawasaki, Blue Light-Emitting Diode Based on ZnO, Jpn. J Appl. Phys. 44, L643, (2005)
[2] K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabe, B.P. Zhang, Y.segawa, High-quality ZnO films prepared on Si wafers by low-pressure MO-CVD, Thin Solid Film 433, 131-134, (2003)
[3] S.J. Martin, S.S. Schwartz, R.L. Gunshor, R.F. Pierret, Surface acoustic wave resonators on a ZnO-on-Si layered medium, J. Appl. Phys. 54 (2), 561, (1983)
[4] T. Detchprohm, K. Hiramatsu, Hydride vapor phase epitaxial growth of a high quality GaN film using a ZnO buffer layer, Appl. Phys. Lett. 61 (22), 2688, (1992)
[5] T. Detchprohm, H. Amano, K. Hiramatsu, I. Akasaki, The growth of thick GaN film on sapphire substrate by using ZnO buffer layer , J. Crystal Growth, 128, 384 (1993)
[6] T. Frank, J. Smith, Metalorganic chemical vapor deposition of oriented ZnO films over large areas, Appl. Phys. Lett. 43 ,1108,(1983)
[7] S.B. Krupanidhi, M. Sayer, Position and pressure effects in rf magnetron reactive sputter deposition of piezoelectric zinc oxide, J. Appl. Phys. 56 (11) 3308. (1984)
[8] F. Caillaud, A. Smith, J.F. Baumard, Effect of pH of the Solution on the Deposition of Zinc Oxide Films by Spray Pyrolysis, J. Am. Ceram. Soc. 76, 998,(1993)
[9] Q. Chen, Y. Qian, Z. Chen, G. Zhou, Y. Zhang, Hydrothermal preparation of highly oriented polycrystalline ZnO thin films, Mater. Lett. 22, 93. (1995)
[10] H.K. Kim, M. Mathur, Thermally stable ZnO films deposited on GaAs substrates with a SO2 thin buffer layer, Appl. Phys. Lett. 61, 2524. (1992)
[11] Zhuxi Fu, Ziqin Wu, The effect of Zn buffer layer on growth and luminescenceof ZnO films deposited on Si substrates, Journal of Crystal Growth, 193,316-321, (1998)
[12] G.P. Li, L. Jiang, S.J. Wang, X.W. Sun, X. Chen,T. Wu, Buffer-Layer-Assisted Epitaxial Growth of Perfectly Aligned Oxide Nanorod Arrays in Solution, Cryst. Growth Des. 11, 4885–4891,(2011)
[13] Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nat, Nanowire dye-sensitized solar cells, Mater., 4, 455. (2005)
[14] Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y. F.; Saykally, R. J.; Yang, Low-Temperature Wafer-Scale Production ofZnO Nanowire Arrays, P. D. Angew. Chem., Int. Ed., 42, 3031. (2003)
[15] Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. D., General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds, Nano Lett., 5, 1231. (2005)
[16] Xu, S.; Wei, Y.; Kirkham, M.; Liu, J.; Mai, W.; Davidovic, D.; Snyder, R. L.; Wang, Z. L., Patterned Growth of Vertically Aligned ZnO Nanowire Arrays on Inorganic Substrates at Low Temperature without Catalyst, J. Am. Chem. Soc., 130, 14958. (2008)
[17] Lu Yuan, Yiqian Wang, Rediola Mema, Guangwen Zhou, Driving force and growth mechanism for spontaneous oxidenanowire formation during the thermal oxidation of metals, Acta Materialia 59, 2491–2500 (2011).
[18] Lu Yuan, Chao Wang, Rongsheng Cai, Yiqian Wang, Guangwen Zhou, Temperature-dependent growth mechanism and microstructureof ZnO nanostructures grown from the thermal oxidation of zinc, Journal of Crystal Growth 390,101–108 (2014).
[19] E. Sutter and P. Sutter, Size-Dependent Room Temperature Oxidation of In Nanoparticles, J. Phys. Chem. C, 116, 20574−20578 (2012).
[20] Kuo-Chih Chou, Qun Luo, Qian Li, Jie-Yu Zhang, Influence of the density of oxide on oxidation kinetics, Intermetallics 47, 17-22 (2014).
[21] R.Nakamura, J.-G. Lee, D. Tokozakura , H. Mori, H. Nakajima, Formation of hollow ZnO through low-temperatureoxidation of Zn nanoparticles, Materials Letters 61, 1060–1063 (2007).
[22] J. E. Ayers, “Heteroepitaxy of Semiconductors., pp.105-137, 161-170. , (2006)
[23]羅吉宗譯,“薄膜科技與應用(修訂版),全華科技圖書股份有限公司出版,pp.4-25~4-27, 5-14~5-15,(2005)
[24]G. Springholz, N. Frank, and G. Bauer, The origin of surface roughening in lattice-mismatched Frank van der Merwe type heteroepitaxy, Thin Solid Films, 15, 267 (1995)
[25]L.B. Freund, S. Suresh, “Thin Film Materials Stress, Defect Formation and Surface Evolution, Cambridge University Press, (2003)
[26] C.C. Liu, J.H. Huang, C.S. Ku, S.J. Chiu, J. Ghatak, S. Brahma, C.W. Liu, C.P. Liu, and K.Y. Lo, Crystal Orientation Dynamics of Collective Zn dots before Preferential Nucleation, Scientific Reports 5, 12533 (2015)
[27] Moustakas, T.D., Jacques, I.P. (eds.). “Gallium Nitride (GaN) I, Semiconductors and Semimetals, Vol. 50, Academic Press, San Diego, (1998.)
[28] Shuji Nakamura, “GaN growth using GaN buffer layer, Jpn. J. Appl.Phys. , vol.30, p.1705, (1991)
[29] Chun-Chu Liu, Jun-Han Huang, Ching-Shun Ku, Shang-Jui Chiu, Jay Ghatak, Sanjaya Brahma, Chung-Wei Liu, Chuan-Pu Liu, & Kuang-Yao Lo, “Crystal Orientation Dynamics of Collective Zn dots before Preferential Nucleation, Scientific Reports 5, 12533 (2015)
[30] Li-Chi Kao, Bo-Jia Huang, Yu-En Zheng, Kai-Teng Tu, Shang-Jui Chiu, ChingShun Ku, Kuang Yao Lo, Thermal effect of Zn quantum dots grown on Si(111): competition between relaxation and reconstraint, Nanotechnology, 29, 035705 (2018)
[31] 莊達人 著,VLSI 製造技術,高立圖書股份有限公司,P146-160 (1995)
[32] 陳海峰,薛莹洁,表面技術 56-63 (2016)
[33] 陳建人,真空技術與應用,國家實驗研究院儀器科技研究中心出版 (2008)
[34] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56 159-172 (2000)
[35] 泓威科技,真空鍍膜設備,(2020)
[36] Bo-Jia Huang, Li-Chi Kao, Sanjaya Brahma, Yu-En Jeng, Shang-Jui Chiu, Ching-Shun Ku and Kuang-Yao Lo, Epitaxial Zn quantum dots coherently grown on Si(1 1 1): growth mechanism, nonlinear optical and chemical states analyses, J. Phys. D: Appl. Phys. 50, 175301, (2017)
[37] Vladimir P. Zhdanov, Bengt Kasemo, Cabrera–Mott kinetics of oxidation of nm-sized metal particles, Chemical Physics Letters 452, 285–288 (2008)
[38] N. Caberra and N. F. Mott, Theory of the oxidation of metals, Rep. Prog. Phys. 12, 163 (1949)
[39] C. M. Wang, D. R. Baer, L. E. Thomas, J. E. Amonette, Jiji Antony and You Qiang, G. Duscher, Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature, J. Appl. Phys. 98, 094308 (2005)
[40] Luo, Y. R., Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, FL,(2007)
[41] Kenneth R Lawless, The oxidation of metals, Rep. Pvog. Phys. 37, 231-316 (1974)
[42]Chin-Yi Tsai, Jyong-Di Lai, Shih-Wei Feng, Chien-Jung Huang, Chien-Hsun Chen, Fann-Wei Yang, Hsiang-Chen Wang and Li-Wei Tu, Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications, Beilstein J. Nanotechnol. 8, 1939–1945, (2017)
[43] G. Zhu, J. Zhu, W. Jiang, Z. Zhang, J. Wang, Y. Zhu, Q. Zhang, Surface oxygen vacancy induced α-MnO2nanofiber for highlyefficient ozone elimination, Applied Catalysis B: Environmental 209,729–737 (2017)
[44] Blindern, Ozone and UV-radiation, FYS 3610 University of Oslo, (2009)
[45] Kelin Kuhn, Laser Engineering, Upper Saddle River, NJ : Prentice Hall, (1998)
[46] Robert W. Boyd, “ Nonlinear Optics 3ed. ,Academic Press, America (2008)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔