(3.238.235.155) 您好!臺灣時間:2021/05/16 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柯皓銓
研究生(外文):Hao-ChuanKe
論文名稱:鋼構架外覆混凝土空心磚牆之耐震工法研究
論文名稱(外文):Seismic Method Studies for Hollow Concrete Brick Panels Attached to Steel Frames
指導教授:杜怡萱杜怡萱引用關係
指導教授(外文):Yi-Hsuan Tu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:建築學系
學門:建築及都市規劃學門
學類:建築學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:373
中文關鍵詞:空心磚牆鋼骨構架加筋面內鋼筋間距
外文關鍵詞:Steel frameConcrete brick panelReinforcedIn-planeVertical reinforcement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文延續前期試驗研究,針對國內「美莊股份有限公司」所採用之鋼骨構架搭配部分填漿之加筋混凝土空心磚牆工法改良並進行耐震性探討,期能減輕現行工法因柱牆互制導致牆體受側向力時容易開裂破壞之情形,同時探討牆內垂直筋間距對混凝土空心磚牆及構架受力行為之影響。
本研究將美莊公司外牆工法進行改良,加入「隔離縫」與「誘發縫」兩種耐震工法,並以磚牆內垂直筋間距為變因,設計足尺單層單跨試體兩座,牆內垂直筋間距分別為400mm與800mm,進行位移控制之面內往復側推試驗。側推過程中施加模擬靜載重之固定軸壓力,並控制頂梁維持水平以模擬低層建築之典型剪力屋架行為。同時為瞭解材料力學特性,取樣磚牆及鋼構架等主要材料進行試驗,包含空心磚塊、磚墩、砂漿之抗壓試驗與灰縫抗剪試驗,以及鋼筋及鋼材抗拉試驗。
側推試驗結果顯示,兩座試體行為類似,磚牆在試驗初期即於誘發縫開裂並出現一強度峰值,牆體本身各僅出現一道局部正向或反向斜裂縫,隨後強度下降,至試驗中期兩試體強度重新回升,並約略維持一強度平台,直至試驗後期,磚牆本體並無明顯可見之新增裂縫,磚牆垂直邊緣則在加載超過隔離縫留設距離後受鋼構架擠壓而逐漸壓碎剝落,兩側包柱磚則由於牆體水平筋錨定不足而發生面外傾斜、崩落的現象。相較於未採用耐震工法之前期試體,本文試體極限強度雖較低,卻因隔離縫的加入使整體破壞情形往後推遲,構架變形時磚牆連接樓版部分可沿誘發縫滑移,而大幅減輕誘發縫以下磚牆本體損害程度。由於兩試體牆體內部鋼筋受力情形輕微且無明顯差異,兩試體破壞歷程亦十分相似,因此無法證實垂直鋼筋間距是否影響磚牆受力行為。
本文根據ASCE41-13檢驗此結構系統之耐震性能,發現於變位角超過0.5%時兩試體磚牆正面皆僅新增細微裂縫,並於磚牆背面誘發縫附近發生磚表面層剝落與角隅磚碎片脫落情況,乃屬於可修復之破壞情形,因此滿足「可立即使用」之性能標準,於變位角1%時仍僅有角隅輕微擠碎或開裂、些許輕微剝落,但牆體本身未有顯著破壞,符合「可回復原狀」及「維護生命安全」之性能標準,顯示本文所採用之耐震工法確實有效改善空心磚牆之耐震性能。
The objectives of this research are to understand the seismic performance of hollow concrete brick panels attached to steel frames and to improve the current construction methods by adding seismic methods, including sliding joints and seismic joints. To accomplish these, two specimens with different spacing of vertical reinforcement were subjected to in-plane reversed cyclic displacements and constant vertical loading.
The results showed that the panel with seismic methods cracked at the sliding joint and formed the initial crack slit at a small drift ratio. After sliding joint is cracked, the specimen started to slide along the interface of the sliding joint, causing merely damage to the panel. After the drift ratio reached 1%, which is the distance of the seismic joints, the steel frame started to push the panel, causing brick spalling from the corner of the panel. Meanwhile, the column bricks also formed vertical cracks due to the push of the steel frame, which began to develop its strength and ductility. At the end of the experiment, both side of the column bricks either fell off from the panel or generated wide cracks, showing the lack of horizontal reinforcement connection between the panel and column bricks.
Reviewing the seismic performance made by ASCE41-13, both specimens merely generated cracked in front side at drift ratio 0.5%, with bricks slightly fell off in back side, which still reach the requirement of “operational”. At drift ratio 1%, panels were not severely damaged but had brick spalling from the corner, which also fits the requirement of “position retention” and “life safety”, showing that the adding of seismic can surely improve the seismic performance of hollow concrete brick panels. Besides, both damage phenomena and the results of strain gauge have shown that there is no obvious difference with different spacing of vertical reinforcement.
表目錄IV
圖目錄V

第一章 緒論
1.1 研究動機與目的1-1
1.2 文獻回顧1-2
1.2.1 鋼構架內填磚牆搭配隔離縫工法之相關文獻1-2
1.2.2 誘發縫相關文獻1-3
1.2.3 鋼筋間距相關文獻1-4
1.2.4 前期試驗文獻回顧1-5
1.3 研究方法1-6
1.4 章節概述1-6

第二章 試驗介紹
2.1 試體設計與試驗規劃2-1
2.1.1 試體原型2-1
2.1.2 耐震工法試體設計2-2
2.1.3 試驗裝置與加載歷程2-17
2.1.4 量測儀器規劃2-24
2.2 試體施工過程2-35
2.3 材料性質2-39
2.3.1 空心磚塊抗壓試驗2-42
2.3.2 空心磚墩抗壓試驗2-44
2.3.3 砂漿抗壓試驗2-43
2.3.4 灰縫抗剪試驗2-49
2.3.5 混凝土圓柱抗壓試驗2-51
2.3.6 鋼筋抗拉試驗2-52
2.3.7 鋼材抗拉試驗2-54

第三章 試驗結果與破壞歷程
3.1 試驗流程與加載歷程3-1
3.2 試驗結果3-9
3.2.1 試體破壞歷程3-9
3.2.2 試體破壞與受力關係3-32
3.2.3 試體受力破壞模式歸納3-37

第四章 量測儀器分析結果與討論
4.1 試體受力變形模式4-1
4.1.1 鋼骨構架變形模式4-1
4.1.2 磚牆變形模式4-17
4.2 鋼構架與牆筋應變4-33
4.3 小結4-53

第五章 試體比較與討論
5.1 試體變因說明5-1
5.2 本文試體比較5-1
5.3 與前期試體比較5-8


第六章 結論與建議
6.1 結論6-1
6.2 建議6-2

參考文獻 參-1

附錄A 試體ES-40各階段裂縫圖與破壞照片A-1
附錄B 試體ES-80各階段裂縫圖與破壞照片B-1
附錄C 各試體鋼骨應變與側位移關係圖C-1
附錄D 各試體牆筋應變與側位移關係圖D-1
1.Masonry Standards Joint Committee (MSJC), Building Code Requirements for Masonry Structures(TMS 402-13/ACI 530-13/ASCE 5-13), MSJC, USA, 2013.
2.Standards New Zealand (NZS), Design of Reinforced Concrete Masonry Structures (NZS 4230:2004), NZS, Wellington, New Zealand, 2004.
3.李霽,「鋼構架外覆混凝土空心磚牆之面內側推試驗」,碩士論文,國立成功大學建築系,台南,2018。
4.American Society of Civil Engineers (ASCE), Seismic Evaluation and Retrofit of Existing Buildings (ASCE/SEI 41-13), ASCE, Reston, VA, USA, 2013.
5.Bachmann H., “Seismic Conceptual Design of Buildings—Basic Principles for Engineers, Architects, Building Owners, and Authorities, Swiss Federal Office for Water and Geology, Switzerland, 2003.
6.Charleson A., “Seismic Design for Architects: Outwitting the Quake, United Kingdom (UK): Jordan Hill, Oxford: Architectural Press of Elsevier, 2008
7.Ju R. S., Lee H. J., Chen C. C., and Tao C. C., “Experimental Study on Separating Reinforced Concrete Infill Walls from Steel Moment Frames, Journal of Constructional Steel Research, Vol. 71, pp. 119–128, 2012.
8.Preti M., Bettini N., and Plizzari G., “Infill Walls with Sliding Joints to Limit Infill-Frame Seismic Interaction: Large-Scale Experimental Test, Journal of Earthquake Engineering, Vol. 16, No. pp. 125-141, 2012.
9.Preti M., Migliorati L. and Giuriani E., “Experimental Testing of Engineered Masonry Infill Walls for Post-Earthquake Structural Damage Control, Bulletin of Earthquake Engineering, Vol. 13, pp. 2029–2049, 2015.
10.Morandi P., Milanesi R. and Magenes G., “Innovative Solution for Seismic-Resistant Masonry Infills with Sliding Joints: In-Plane Experimental Performance, Engineering Structures, Vol. 176, pp. 719-733, 2018.
11.Preti M., Bolis V, and Stavridis A., “Seismic Infill–Frame Interaction of Masonry Walls Partitioned with Horizontal Sliding Joints: Analysis and Simplified Modeling, Journal of Earthquake Engineering, Vol. 10, pp. 1651-1677, 2017.
12.Voon K. C. and Ingham J. M., “Experimental In-Plane Shear Strength Investigation of Reinforced Concrete Masonry Walls, Journal of Structural Engineering, Vol. 132, pp. 400-408, 2006.
13.Nolph S. M. and Elgawady M. A., “Static Cyclic Response of Partially Grouted Masonry Shear Walls, Journal of Structural Engineering, Vol. 138, pp. 864-879, 2012.
14.ElDin H. M. and Khaled G., “Effect of Reinforcement Anchorage End Detail and Spacing on Seismic Performance of Masonry Shear Walls, Engineering Structures, Vol.157, pp. 268-279, 2018.
15.Federal Emergency Management Agency (FEMA), Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components (FEMA 461), FEMA , Washington, D.C., June, 2007.
16.Drysdale R. G., Hamid A. A., and Baker L. R., Masonry Structures: Behavior and Design, Prentice Hall College Div, New Jersey, 1994.
17.CNS 8905, “建築用混凝土空心磚 中華民國國家標準,2018.
18.ASTM C1314-14, “Standard Test Method for Compressive Strength of Masonry Prisms, ASTM International, West Conshohocken, PA, 2014.
19.CNS 1010, “水硬性水泥墁料抗壓強度檢驗法 中華民國國家標準,2011.
20.CNS 1232, “混凝土圓柱試體抗壓強度檢驗法 中華民國國家標準,2014.
21.CNS 560, “鋼筋混凝土用鋼筋 中華民國國家標準,2018.
22.CNS 2111, “金屬材料拉伸試驗法 中華民國國家標準,2019.
23.李宏仁、陳正誠、朱瑞祥、歐俊佑,「鋼骨構架含非結構RC牆之耐震性能研究」,中華民國內政部建築研究所,ISBN:987-986-02-1645-5,2009。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top