(18.206.238.77) 您好!臺灣時間:2021/05/18 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳潔榮
研究生(外文):Chieh-JungChen
論文名稱:渦漩式噴注器設計對渦漩數及噴霧之影響
論文名稱(外文):The Effect of Swirl Injector Design on Swirl Number and Spray
指導教授:袁曉峰袁曉峰引用關係
指導教授(外文):Tony Yuan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:78
中文關鍵詞:渦漩式噴注器渦漩數噴霧量測PIVPLIF
外文關鍵詞:swirl injectorswirl numberspray measurementPIVPLIF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究參考TFE1042-70之燃油噴嘴,設計一由渦漩室、漸縮段及出口段組成之液體切向注入渦漩式噴注器,以觀察燃油噴嘴各項設計參數對噴霧之影響,並在外圍加上一氣體軸向導引葉片,以供應渦漩氣流,使之成為一氣衝式噴注器。
本研究設計參數為內層燃油噴注器之渦漩片注入孔數(二孔、四孔)及出口段長徑比(L/D=4.2、L/D=2.5),並以CFD模擬計算各型設計與流率操作下之流體渦漩數,作為可量化變因。結果顯示流率1 g/s~10 g/s時,計算所得各型噴注器設計之渦漩數(0.44~0.72)將隨流率增加而增加,且造成噴霧平均粒徑減小、破碎距離縮短、霧化角增大之影響;以渦漩片注入孔數及出口段長徑比為設計參數,實驗顯示減少渦漩片注入孔數及減少出口段長徑比均造成渦漩數增大,產生之噴霧破碎距離縮短、平均粒徑變小、霧化角增大之影響。
在氣渦漩與噴霧交互作用的實驗中,以固定內部液體流率3 g/s、氣漩壓差0 psi~15 psi作為實驗條件進行比較分析,可發現氣渦漩設計會造成噴霧霧化角增大、平均粒徑小及液滴分布均勻之影響,並且隨氣漩壓差增加空心現象將逐漸消失。
Referring TFE1042-70 fuel nozzle design, this study utilizes a simple swirling fuel injector which consisted of a swirl chamber, a spin chamber and an exit orifice part to analyze the effect of some design parameters on fuel spray. In addition, an angled guide vane is installed outside the fuel injector to create air vortex to complete an airblast injector design. The design parameters of swirling fuel injector are the number of fuel injection port for the swirler (two ports, four ports), and the L/D of exit orifice part (L/D=4.2, L/D=2.5). Swirl number calculated from CFD simulation results is used as a quantified variable to characterize the injector operation. The results show that the increasing of fuel flow rate from 1 g/s to 10 g/s, reducing fuel injection ports of swirler and L/D of exit part will increase swirl number. And smaller SMD, shorter breaking distance, higher spray speed, and larger atomization angle are appeared at larger swirl numbers.
In the experiment of interaction between air vortex and inner fuel spray, the liquid mass flow rate is set to be 3 g/s and the supply pressure drop of the outer air is from 0 psi to 15 psi. The results show that adding air vortex significantly increases the spray angle and uniformity of the spray distribution, and also creates smaller SMD.
摘要 i
致謝 vii
目錄 viii
表目錄 xi
圖目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 渦漩產生方式 2
1.2.2 噴霧之霧化機制 3
1.2.3 渦漩數 4
1.3 研究動機與目的 6
第二章 研究方法 7
2.1 噴注器設計 8
2.2 流場模擬及渦漩數計算 9
2.3 噴霧特性攝影 11
2.4 粒子成像測速法(PIV) 12
2.5 平均粒徑量測 13
2.6 平面雷射誘導螢光技術(PLIF) 14
第三章 實驗設備 16
3.1 流體供應及控制系統 16
3.2 噴霧觀測系統 17
3.2.1 高速攝影系統 17
3.2.2 粒徑量測系統 17
3.2.3 質量分布量測系統 17
第四章 結果與討論 18
4.1 渦漩式噴注器各項結果討論 18
4.1.1 噴注器內部流場與渦漩數分析 19
4.1.2 噴霧特性觀測結果 21
4.1.3 渦漩數對於噴霧特性之影響 27
4.2 外層氣渦漩對於噴霧之影響 29
第五章 結論 31
5.1 結論 31
5.2 未來工作 33
參考文獻 34
附錄 78
[1] Malý, M., (2014), Quality Of Fuel Atomization From Small Pressure-swirl Atomizers, Bachelor's thesis, Brno University of Technology, Brno.
[2] C. A. MARTIN, (1987), Aspects of the Design of Swirlers as used in Fuel Injectors for Gas Turbine Combustors, Parker Hannifin Corp., New York.
[3] N.K. Rizk, A.H. Lefebvret, (1985), Internal Flow Characteristics of Simplex Swirl Atomizers, J. Propul.
[4] Lefebvre, A. H., (1989), Atomization and Sprays, Hemisphere Pub. Corp., New York.
[5] Yakang Xia, Lyes Khezzar, Shrinivas Bojanampati, and Arman Molki, (2019), Breakup of the Water Sheet Formed by Two Liquid Impinging Jets, International Journal of Chemical Engineering Volume.
[6] Chigier, N. A., and Beer, J. M., (1964), Velocity and Static-Pressure Distributions in Swirling Air Jets Issuing from Annular and Divergent Nozzles, J. Basic Eng. 788-796.
[7] Norwazan A. R., Mohammad Nazri Mohd. Jaafarb, (2014), The Effect of Velocity in High Swirling Flow in Unconfined Burner, Laboratory of Mechanics, Amar Telidji University, France.
[8] P.Balakrishnan, K.Srinivasan, (2017), Influence of Swirl Number on Jet Noise Reduction Using Flat Vane Swirlers, Indian Institute of Technology Madras, India.
[9] H. J. Sheen, W. J. Chen, S. Y. Jeng, T. L. Huang, (1996), Correlation of Swirl Number for a Radial-Type Swirl Generator, National Taiwan University.
[10] Jazayeri,S.A., Li,X., (2000), Non Linear in Stability of Plane Films.J.FluidMech.406,281–308.
[11] Ibrahim A shraf, A., Jog Milind, A., (2007), Non Linear Break Up Model for a Film Emanating From a Pressure-swirl Atomizer. J.Eng. Gas Turbines Power 129(4),945–953.
[12] Chinn,J.J., (2009), An Appraisal Of Swirl Atomizer Inviscid Flow Analysis, partI, Theprin-ciple of maximum flow for a swir latomizer and its use in theex position and com-parison of early flow analyses, Atomization Sprays, 19,263–282.
[13] Som,S.K., (2012), Air Core in Pressure Swirl Atomizing Nozzles, Atomization Sprays, 22(4),283–303.
[14] A. Datta, S. Som, (2000), Numerical Prediction of Air Core Diameter, Coefficient of Discharge and Spray Cone Angle of a Swirl Spray Pressure Nozzle, Int. J. Heat Fluid Flow 21, 412–419.
[15] M. Halder, S. Dash, S. Som, (2002), Initiation of Air Core in a Simplex Nozzle and the Effects of Operating and Geometrical Parameters on its Shape and Size, Exp. Therm. Fluid Sci. 26 871–878.
[16] G. Amini, (2016), Liquid flow in a Simplex Swirl Nozzle, Int. J. Multiphas. Flow 79 225–235.
[17] T. Inamura, M. Kei, T. Hiroshi, S. Hiroshi, (2001), Spray Characteristics of Swirl Coaxial Injector and its Modeling, in: 37th Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics.
[18] T. Inamura, H. Tamura, H. Sakamoto, (2003), Characteristics of Liquid Film and Spray Injected from Swirl Coaxial Injector, J. Propul. Power 19 (4) 632–639.
[19] M. Yue, H. Xu, M.-l. Yang, H.-j. Yuan, S.-z. Sheng, (2003), Study on Breakup of Conical Film Under Varying Flow Conditions, Chin. J. Aeronaut. 16 (1) 12–14.
[20] M.S.F.M. Rashid, A.H.A. Hamid, O.C. Sheng, Z.A. Ghaffar, (2012), Effect of Inlet Slot number on the Spray Cone Angle and Discharge Coefficient of Swirl Atomizer, Procedia Eng. 41 (0) 1781-1786.
[21] S.Balachandar, A. Soldati, Amini, (2016), International Journal of Multiphase Flow79 225–235.
[22] A.T. Sakman, M.A. Jog, S.M. Jeng, M.A. Benjamin, (2000), Parametric Study of Simplex Fuel Nozzle Internal Flow and Performance, AIAA J. 38 (7) 1214–1218.
[23] Zhongtao Kang a, Zhen-guo Wang b, Qinglian Li b, Peng Cheng, (2018), Review on pressure swirl injector in liquid rocket engine, Acta Astronautica 145 174–198.
[24] D. Kim, J.-H. Im, H. Koh, Y. Yoon, (2007), Effect of Ambient Gas Density on Spray Characteristics of Swirling Films, J. Propul. Power 23 (3) 603–611.
[25] W. Xiao, Y. Huang, (2014), Improved semiempirical correlation to predict sauter mean diameter for pressure-swirl atomizers, J. Propul. Power 30 (6) 1628–1635.
[26] J. Liu, X.-Q. Zhang, Q.-L. Li, Z.-G. Wang, (2013), Effect of geometric parameters on the spray cone angle in the pressure swirl injector, Proceedings of the Institution of Mechanical Engineers, Part G: J. Aero. Eng. 227 (2) 342–353.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文