(3.235.191.87) 您好!臺灣時間:2021/05/13 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:席維廷
研究生(外文):ValentinSteichen
論文名稱:應用陰極真空電弧觸發裝置於新型脈衝電漿推進器之研發
論文名稱(外文):Development of a new pulsed plasma thruster triggered by a cathodic vacuum arc unit
指導教授:李約亨
指導教授(外文):Yueh-Heng Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:72
中文關鍵詞:真空電弧點火器脈衝式電漿推進真空電弧推進電力推進推進器之可靠性
外文關鍵詞:vacuum arc ignitorpulsed plasma thrustervacuum arc thrusterelectric propulsionthruster reliability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
衝式電漿推進(簡稱PPT)是一種電力推進系統。主要是通過脈衝電流與自感應磁場之間的相互作用來產生推力,從而使電漿加速。PPT是用於微型衛星中最具前瞻與可行性的電力推進系統之一。由於它成本低,設計簡單,重量輕且消耗的功率少,因此在軌道高度控制和姿態控制方面具有傑出的優勢。如今的研究集中於以下主要方面:推進器的幾何結構,以及推進劑進料系統的優化。這研究重點在於,設計一種新型PPT,並且整合改良新型的進料系統暨點火系統,簡稱為真空電弧點火器(vacuum arc ignitor, VAI)。VAI是使用真空電弧推進器(vacuum arc thruster, VAT)相同的機制產生電漿,進而誘發點火。使用VAI的優勢在於避免後期剝蝕 (late-time ablation)現象的產生,進而降低推進器性能和使用壽命。
在高真空條件(7×〖10〗^(-5) Torr) 以下,測試該推進器在不同的電極配置條件下的放電現象。結果表明,取決於施加在PPT電極上的電壓,其行為會受到影響。實驗結果顯示,在電壓超過1500V時,點火和第一次放電之間的時間差變得更穩定和一致,並且導致推進器的點火可靠性提高。另外,使用高速攝像機和放電電流測量,一些關於VAI-PPT推進系統在脈衝時間的物理放電過程提出假設,加以解釋。
Pulsed Plasma Thruster (PPT) is a form of electric propulsion in which the plasma is accelerated by the interaction between pulsed current and self-induced magnetic fields to create thrust. PPT is one of the most promising electric propulsive thrusters for small satellites. As it is a low cost, simple in design, lightweight, and is consuming less power, it has excellent advantages for altitude control and station keeping. Nowadays, research is more focused on main aspects: optimization in geometry and feeding methods. In the frame of this study, a new type of PPT has been designed. This thruster used a new modified feeding and ignition system called a vacuum arc ignitor (VAI). This ignitor creates a plasma using the same mechanism as a vacuum arc thruster (VAT). The advantage of using the VAI is that it avoids a late-time ablation that reduces thruster performance and lifetime.
The thruster was tested in high vacuum conditions (7×〖10〗^(-5) Torr) with different electrical configurations. The results showed that depending on the voltage applied on the PPT electrodes, and its behavior is affected. It has been shown that over 1500V, the time difference between the ignition and the primary discharge becomes more stable and consistent and leads to an improvement of the thruster reliability. In addition, using a high-speed camera and discharge current measurement, some hypotheses were raised regarding the physical process involved during the VAI−PPT pulse.
Abstract III
摘要 IV
Acknowledgments V
Content VI
List of figures VII
List of Tables X
Nomenclature XI
List of abbreviations XII
Chapter 1: Introduction 1
1.1 Electric Propulsion 1
1.1.1 Electric Propulsion Background 1
1.1.2 Theory about Electric Propulsion 2
1.2 Electric Propulsion, applications, and impact 6
1.3 Electric propulsion and CubeSats 8
1.4 Motivation and Objectives 11
Chapter 2: Literature Review 12
2.1 Plasma principle 12
2.2 Vacuum cathodic arc thruster 14
2.2.2 Basic VCAT theory 14
2.2.3 Operation Principle of VCAT 18
2.3 Pulsed Plasma Thruster 22
2.3.1 Basic Physics of the PPT 22
2.3.2 Operation Principle of S-PPT 25
Chapter 3: Experimental Equipment 27
3.1 Vacuum Chamber and Pump System 27
3.2 Thruster Design 29
3.2.1 Background 29
3.2.2 VAI-PPT final design 30
3.3 Pulse Discharge Circuit 33
3.3.3 Trigerless method 33
3.3.4 Manually triggered circuit 33
3.4 Current and Voltage Measurements 35
3.4.1 Capacitor discharge 35
3.4.2 Discharge Current 36
3.4.3 Ion Current 38
Chapter 4: Results and discussion 40
4.1 Estimation of the electrical parameters 40
4.2 Discharge process 43
4.3 Thruster performance analysis 47
4.3.1 Thruster discharge reliability 47
4.3.2 Thruster discharge quality 49
4.4 Working Principle of the VAI-PPT 50
Chapter 5: Conclusion & Further Work 52
Appendix 54
VAI technical drawing 54
VAI-PPT technical drawing 55
View of the VAI-PPT 56
PYTHON code used for curve fitting 60
PYTHON code used for deltaT calculation 63
Current Probe for High Current 66
Current Probe for Low Current 67
References 69
[1]D. M. Goebel and I. Katz, Fundamentals of electric propulsion: Ion and Hall Thrusters, California Institute of Technology,USA, 2008.
[2]T. M. Mel’kumov, Pioneers of Rocket Technology, Selected Works, Academy of Sciences of the USSR, Institute for the History of Natural: McGraw-Hill, 1964.
[3]E. Stuhlinger, Ion Propulsion for Space Flight, New York, 1964.
[4]G. R. Brewer, Ion Propulsion Technology and Applications, New York: Gordon and Breach, 1970.
[5]M. Pietzka, A. Knopp and M. Keidar, “Development and Characterization of a Propulsion System, UNIVERSITÄT DER BUNDESWEHR, Munich, 2016.
[6]NASA, “Nasa Space Science Data Coordinated Archive, [Online]. Available: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1964-078C. [Accessed 4 May 2020].
[7]E. Y. Choueiri, “New Dawn of Electric Rockets, Scientific American, Inc, 2009.
[8]ESA, “Technology CubeSat, [Online]. Available: https://www.esa.int/Enabling_Support/
Space_Engineering_Technology/Technology_CubeSats. [Accessed 04 May 2020].
[9]C. S. Lara et J. O. Dalmeses, «Design and Performance Analysis»
Polytechnic University of Catalonia (UPC), 2016.
[10]CubeSat.org, “cubesat.org, [Online]. Available: https://www.cubesat.org/about. [Accessed 05 13 2020].
[11]J. Pascao, O. Teixeira and G. Ribeiro, “A Review of Propulsion Systems for CubeSats, 2018.
[12]C. D. Child, «Velocity of Ions drawn from the Electric Arc» American Physical Society, vol. 12, n° %13, pp. 137-150, 1901.
[13]R. Tanberg, “On the cathode of an Arc Drawn in Vacuum, American Physical Society, vol. 35, no. 9, pp. 1080-1089, 1930.
[14]B. Jüttner, “Erosion Craters and Arc Cathode Spots in Vacuum, Beiträge aus der Plasmaphysik, vol. 1, no. 1, pp. 25-48, 1979.
[15]I. Brown et H. Shiraishi, «Cathode Erosion rates in vacuuum-arc discharge» Plasma Science, vol. 18, pp. 170-171, 1990.
[16]C. W. Kimbli, «Cathode Spot erosion and ionization phenomena in the transition from vacuum to atmospheric pressure arcs» Journal of Applied Science, vol. 45, n° %112, pp. 5235-5244, 1974.
[17]J. E. Daalder, «Erosion and the origin of charged and neutral species in vacuum arcs» Journal of Applied Science, vol. 8, n° 114, pp. 1647-1659, 1975.
[18]J. Kolbeck, A. Anders, I. Beilis et M. Keidar, «Micro-Propulsion based on vacuum arcs» Journal of Applied Science, vol. 125, n° %122, p. 220902, 2019.
[19]J. Schein, N. Qi, R. Binder, M. Krishnan, J. Ziemer, J. Polk et A. Anders, «Low mass vacuum arc thruster system for station keeping missions» pp. 15-19, 2001.
[20]I. Beilis, «Modeling of a microscale short vacuum arc for a space propulsion thruster» Plasma Science, vol. 36, pp. 2163-2166, 2008.
[21]J. Polk, S. M.J., J. Ziemeer, J. Schein, N. Qi et A. Anders, «A Theoretical Analysis of Vacuum Arc Thruster and Vaccum arc Ion Thruster Performance» Plasma Science, vol. 36, pp. 2167-2179, 2008.
[22]G. Sun et Z. Wu, «Ignition mechanism in ablative pulsed plasma thrusters with coaxial semiconductor spark plugs» Acta Astronautica, vol. 151, pp. 120-124, 2018.
[23]R. L. Burton et P. J. Turchi, «Pulsed Plasma Thruster» Journal of Propulsion and Power, vol. 14, n° %15, pp. 717-735, 1998.
[24]Z. Zhe, R. Junxue, T. Haibin, X. Shuting, Y. William, L. Liang et C. Jinbin, «Inter-electrode discharge of an ablative pulsed plasma thruster with asymmetric electrodes,» Plasma Source Science and Technology, vol. 27, n° %112, 2018.
[25]A. Anders, I. G. Brown, R. A. MacGill et M. R. Dickson, «'Trigerless' triggering of vacuum arcs» Journal of Physics D: Applied Physics, vol. 31, n° %15, 1998.
[26]M. H. Samimi, A. Mahari, M. Farahnakian et H. Mohseni, «The Rogowski coil Principles and Applications: A Review» Sensors Journal, vol. 15, pp. 651-658, 2014.
[27]A. Masoumzadeh et A. Habibi, «Design, construction and test of an optimized Faraday cup for beam current determination of a helicon ion source» Vacuum, vol. 159, pp. 99-104, 2019.
[28]N. Sander, T. Jannis et U. Ebert, The Physics of streamer dischagre phenomena, 2020.
[29]B. Stoute, “SlideShare, 22 12 2016. [Online]. Available: https://www.slideshare.net/BarryStoute/20161222-thermal-and-electromagnetic-propulsion. [Accessed 13 04 2020].
[30]O. Räisänen, «A diagram of an electrostatic ion thruster» 2012.
[31]Edelman, «Description of the operation of a Hall Effect Thruster» 2012.
[32]J. E. &. a. Polk, «A theoretical analysis of vacuum arc thruster performance» from 21st International Electrical Propulsion Conference, Pasadena, CA, 2001.
[33]PicSat, «PicSat unravelling the beta pictoris system» 2018. [En ligne]. [Accès le 18 04 2020].
[34]S. Tonooka, I. Funaki, S. Iwabuchu, T. Nakamura, S. Shinohara and H. Nishida, Thruster Characteristics of Helicon Plasma Thrusters, 2015.
[35]A. R. Tummala and A. Dutta, “An overview of Cube-Satellite Propulsion Technologies and Trends, Aerospace, vol. 4, 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔