(3.235.139.152) 您好!臺灣時間:2021/05/08 17:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:古拉維
研究生(外文):RaviKumar
論文名稱:神經膠細胞對培養型神經細胞同步發火現象之影響
論文名稱(外文):Astrocytic Effects on Synchronous Neuronal Bursting in Dissociated Cortical Cultures
指導教授:陳志強陳志強引用關係曾淑芬曾淑芬引用關係
指導教授(外文):Chi-Keung ChanShun-Fen Tzeng
學位類別:博士
校院名稱:國立成功大學
系所名稱:跨領域神經科學國際博士學位學程
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:131
外文關鍵詞:multi-electrode arraysglutamate transportersglutamate traffickingneuron-glia interactionnetwork dynamicssimulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Synchronous bursting (SB), ubiquitous in neuronal networks, is related to brain in health as well as diseases. Recent studies provide lines of evidence that astrocytes participate in local synaptic glutamatergic transmissions. However, the effects of astrocytes in SBs which is a network phenomenon remains unclear. We investigated the collective behavior of neurons and astrocytes simultaneously in primary cortical cell cultures developed on multi-electrode array (MEA) systems. Employing glutamate sensors (iGluSnFR) expressed specifically on astrocytes, array-wide rapid transients of glutamate were observed. These transient glutamate traffics at synapses were synchronized with the SBs detected from MEAs. Pharmacological experiments revealed that the properties of SB events depend on astrocytic GLT-1 glutamate transporters. With GCaMP6f sensors expressed on astrocytes, persistent SBs were found to reliably induce array-wide synchronous calcium elevations in astrocytes. To obtain further insights into glutamate trafficking dynamics, a tripartite synapse model (TUMA), incorporating local properties of astrocytes, was developed. Simulation results conformed well with the experimental finding and further clarified that astrocytes regulate synaptic transmissions by fixing the amount of glutamate availability in the presynaptic neurons. During SBs, the tripartite TUMA synapse is basically a traditional bipartite synapse with the amount of astrocyte-controlled glutamate. Hence, SB can be understood as a result of the negative feedback response of the astrocytes to the excessive firings of the neural network; similar to the case of epilepsy.
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Page
Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . xvii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Synchronous bursting in neurons . . . . . . . . . . . 4
1.2 Neuron physiology . . . . . . . . . . . . . . . . . . . 10
1.3 Astrocyte physiology . . . . . . . . . . . . . . . . . . 13
1.4 Neuron-astrocyte interactions . . . . . . . . . . . . . 17
1.5 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . 18
2 Materials and methods . . . . . . . . . . . . . . . . 21
2.1 Cell culture . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.1 Culture preparations . . . . . . . . . . . . . . . . . . 23
2.1.2 Immunocytochemistry . . . . . . . . . . . . . . . . . 25
2.2 Multi-electrode array . . . . . . . . . . . . . . . . . 26
2.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Signal to noise ratio . . . . . . . . . . . . . . . . . . 28
2.2.3 Recording procedure . . . . . . . . . . . . . . . . . . 30
2.2.4 Signal analysis . . . . . . . . . . . . . . . . . . . . . 31
2.3 Fluorescence Imaging . . . . . . . . . . . . . . . . . 32
2.3.1 Genetically encoded glutamate sensors . . . . . . . . 34
2.3.2 Genetically encoded calcium indicators . . . . . . . . 34
2.3.3 Imaging setup . . . . . . . . . . . . . . . . . . . . . 34
2.3.4 Imaging procedure . . . . . . . . . . . . . . . . . . . 35
2.3.5 Signal analysis . . . . . . . . . . . . . . . . . . . . . 36
2.4 Pharmacology . . . . . . . . . . . . . . . . . . . . . 36
2.5 Connectivity analyses . . . . . . . . . . . . . . . . . 39
2.5.1 Analysis steps . . . . . . . . . . . . . . . . . . . . . 41
2.6 Tripartite synapse modelling and simulation . . . . . 42
2.6.1 Bipartite synapse model . . . . . . . . . . . . . . . . 42
2.6.2 Tripartite synapse (TUMA) model development . . . 44
2.6.3 Simulation method . . . . . . . . . . . . . . . . . . . 47
2.7 Statistics . . . . . . . . . . . . . . . . . . . . . . . . 51
3 Glial effects on spontaneous SB development . . . . . 53
3.0.1 Development of spontaneous activity . . . . . . . . . 55
3.0.2 Development of functional connectivity . . . . . . . . 59
4 Synchronous bursting dynamics in cortical cultures . 65
4.1 SB associated active and dormant states in cortical
networks . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Synaptic glutamate dynamics accompanying SB . . . 68
4.3 Pharmacologically targeting astrocytic GLT-1 alters
SB properties . . . . . . . . . . . . . . . . . . . . . . 71
4.4 SBs are not terminated by inhibition . . . . . . . . . 74
4.5 Calcium dynamics in astrocytes . . . . . . . . . . . . 80
4.5.1 Synchronous calcium elevations in astrocytes . . . . . 80
4.5.2 Coordinated neuron-astrocyte activities . . . . . . . 80
4.5.3 Neuronal SB triggers SCE in astrocytes . . . . . . . 82
5 Synaptic glutamate trafficking - model study . . . . 85
5.1 Simulation results . . . . . . . . . . . . . . . . . . . 85
5.1.1 Synchronous bursting events . . . . . . . . . . . . . 86
5.1.2 Slower astrocytic uptake alters SB properties . . . . 89
5.1.3 SB can be produced with fixed amount of glutamate
in astrocytes . . . . . . . . . . . . . . . . . . . . . . 94
5.1.4 Slower glutamate translocation from astrocytes to
neurons alters SB properties . . . . . . . . . . . . . . 95
6 Discussions . . . . . . . . . . . . . . . . . . . . . . . 99
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 113
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.1 Equipments and Softwares . . . . . . . . . . . . 123
A.2 Antibodies . . . . . . . . . . . . . . . . . . . . . . 124
A.3 Viral constructs . . . . . . . . . . . . . . . . . . . 124
A.4 Drugs . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.5 List of compounds used in this study . . . . . . 125
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
B.1 Plating Medium . . . . . . . . . . . . . . . . . . . 127
B.2 Maintenance Medium . . . . . . . . . . . . . . . 127
B.3 Enzymatic Tissue Dissociation Solution . . . . 127
B.4 MEA Surface Coating Materials . . . . . . . . . 128
Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
C.1 MEA 4-Well Coating Protocol . . . . . . . . . . 129
C.2 Dissection and plating Protocol . . . . . . . . . 129
C.3 Virus infection in culture Protocol . . . . . . . 131
[Abbott et al., 1997] Abbott, L. F., Varela, J., Sen, K., and Nelson, S. (1997). Synaptic depression and cortical gain control. Science, 275(5297):221–224.
[Achour and Pascual, 2010] Achour, S. B. and Pascual, s. O. (2010). Glia: the many ways to modulate synaptic plasticity. Neurochemistry international, 57(4):440–445.
[Aguado et al., 2002] Aguado, F., Espinosa-Parrilla, J. F., Carmona, M. A., and Soriano, E. (2002). Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. Journal of Neuroscience, 22(21):9430–9444.
[Agulhon et al., 2008] Agulhon, C., Petravicz, J., McMullen, A. B., Sweger, E. J., Minton, S. K., Taves, S. R., Casper, K. B., Fiacco, T. A., and McCarthy, K. D. (2008). What is the role of astrocyte calcium in neurophysiology. Neuron, 59(6):932–946.
[Alabi and Tsien, 2012] Alabi, A. A. and Tsien, R. W. (2012). Synaptic vesicle pools and dynamics. Cold Spring Harbor perspectives in biology, 4(8): a013680.
[Anderson and Swanson, 2000] Anderson, C. M. and Swanson, R. A. (2000). Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia, 32(1):1–14.
[Araque et al., 1999] Araque, A., Parpura, V., Sanzgiri, R. P., and Haydon, P. G. (1999). Tripartite synapses: glia, the unacknowledged partner. Trends in neurosciences, 22(5):208–215.
[Arenas et al., 2008] Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C. (2008). Synchronization in complex networks. Physics reports, 469(3):93–153.
[Armbruster et al., 2016] Armbruster, M., Hanson, E., and Dulla, C. G. (2016). Glutamate clearance is locally modulated by presynaptic neuronal activity in the cerebral cortex. Journal of Neuroscience, 36(40):10404–10415.
[Arriza et al., 1994] Arriza, J. L., Fairman, W. A., Wadiche, J. I., Murdoch, G. H., Kavanaugh, M. P., and Amara, S. G. (1994). Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. Journal of Neuroscience, 14(9):5559–5569.
[Axmacher et al., 2006] Axmacher, N., Mormann, F., Fernández, G., Elger, C. E., and Fell, J. (2006). Memory formation by neuronal synchronization. Brain research reviews, 52(1):170–182.
[Azevedo et al., 2009] Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti, R. E., Leite, R. E., Filho, W. J., Lent, R., and Herculano-Houzel, S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology, 513(5):532–541.
[Bacci et al., 2002] Bacci, A., Sancini, G., Verderio, C., Armano, S., Pravettoni, E., Fesce, R., Franceschetti, S., and Matteoli, M. (2002). Block of glutamate-glutamine cycle between astrocytes and neurons inhibits epileptiform activity in hippocampus. Journal of Neurophysiology, 88(5):2302–2310.
[Bak et al., 2006] Bak, L. K., Schousboe, A., and Waagepetersen, H. S. (2006). The glutamate/gabaglutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. Journal of neurochemistry, 98(3):641–653.
[Banasr and Duman, 2008] Banasr, M. and Duman, R. S. (2008). Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biological psychiatry, 64(10):863–870.
[Bass et al., 1971] Bass, N. H., Hess, H. H., Pope, A., and Thalheimer, C. (1971). Quantitative cytoarchitectonic distribution of neurons, glia, and dna in rat cerebral cortex. Journal of Comparative Neurology, 143(4):481–490.
[Bechtholt-Gompf et al., 2010] Bechtholt-Gompf, A. J.,Walther, H. V., Adams, M. A., Carlezon Jr, W. A., Öngür, D., and Cohen, B. M. (2010). Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology, 35(10):2049.
[Beggs and Plenz, 2003] Beggs, J. M. and Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of neuroscience, 23(35):11167–11177.
[Beggs and Plenz, 2004] Beggs, J. M. and Plenz, D. (2004). Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. Journal of neuroscience, 24(22):5216–5229.
[Belykh et al., 2005] Belykh, I., de Lange, E., and Hasler, M. (2005). Synchronization of bursting neurons: What matters in the network topology. Physical review letters, 94(18):188101.
[Blackshaw et al., 2011] Blackshaw, L. A., Page, A. J., and Young, R. L. (2011). Metabotropic glutamate receptors as novel therapeutic targets on visceral sensory pathways. Frontiers in neuroscience, 5:40.
[Boehler et al., 2007] Boehler, M. D., Wheeler, B. C., and Brewer, G. J. (2007). Added astroglia promote greater synapse density and higher activity in neuronal networks. Neuron glia biology, 3(2):127–140.
[Bredt and Nicoll, 2003] Bredt, D. S. and Nicoll, R. A. (2003). Ampa receptor trafficking at excitatory synapses. Neuron, 40(2):361–379.
[Bröer and Brookes, 2001] Bröer, S. and Brookes, N. (2001). Transfer of glutamine between astrocytes and neurons. Journal of neurochemistry, 77(3):705–719.
[Budisantoso et al., 2013] Budisantoso, T., Harada, H., Kamasawa, N., Fukazawa, Y., Shigemoto, R., and Matsui, K. (2013). Evaluation of glutamate concentration transient in the synaptic cleft of the rat calyx of held. The Journal of physiology, 591(1):219–239.
[Buzsáki et al., 2012] Buzsáki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellular fields and currents—eeg, ecog, lfp and spikes. Nature reviews neuroscience, 13(6):407–420.
[Cannell et al., 1987] Cannell, M., Berlin, J., and Lederer, W. (1987). Intracellular calcium in cardiac myocytes: calcium transients measured using fluorescence imaging. Soc Gen Physiol Ser, 42:201–214.
[Chen et al., 2006] Chen, C., Chen, L., Lin, Y., Zeng, S., and Luo, Q. (2006). The origin of spontaneous synchronized burst in cultured neuronal networks based on multi-electrode arrays. Biosystems, 85(2):137–143.
[Chialvo and Jalife, 1987] Chialvo, D. R. and Jalife, J. (1987). Non-linear dynamics of cardiac excitation and impulse propagation. Nature, 330(6150):749–752.
[Clements et al., 1992] Clements, J. D., Lester, R., Tong, G., Jahr, C. E., and Westbrook, G. L. (1992). The time course of glutamate in the synaptic cleft. Science, 258(5087):1498–1501.
[Cooper et al., 2003] Cooper, J. R., Bloom, F. E., and Roth, R. H. (2003). The biochemical basis of neuropharmacology. Oxford University Press, USA.
[Copeland and Moiseff, 1994] Copeland, J. and Moiseff, A. (1994). The occurrence of synchrony in the north american fireflyphotinus carolinus (coleoptera: Lampyridae). Journal of Insect Behavior, 8(3):381–394.
[Coulter and Eid, 2012] Coulter, D. A. and Eid, T. (2012). Astrocytic regulation of glutamate homeostasis in epilepsy. Glia, 60(8):1215–1226.
[Danbolt et al., 1998] Danbolt, N., Chaudhry, F., Dehnes, Y., Lehre, K., Levy, L., Ullensvang, K., and Storm-Mathisen, J. (1998). Properties and localization of glutamate transporters. In Progress in brain research, volume 116, pages 23–43. Elsevier.
[Danbolt, 2001] Danbolt, N. C. (2001). Glutamate uptake. Progress in neurobiology, 65(1):1–105.
[Dani et al., 1992] Dani, J. W., Chernjavsky, A., and Smith, S. J. (1992). Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron, 8(3):429–440.
[Dermietzel et al., 1991] Dermietzel, R., Hertberg, E., Kessler, J., and Spray, D. C. (1991). Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. Journal of Neuroscience, 11(5):1421–1432.
[Deuschl and Eisen, 1999] Deuschl, G. and Eisen, A. (1999). Recommendations for the practice of clinical neurophysiology: guidelines of the International Federation of Clinical Neurophysiology. Number 52. Elsevier Health Sciences.
[Eccles, 1982] Eccles, J. C. (1982). The synapse: from electrical to chemical transmission. Annual review of neuroscience, 5(1):325–339.
[Eid et al., 2016] Eid, T., Gruenbaum, S. E., Dhaher, R., Lee, T.-S. W., Zhou, Y., and Danbolt, N. C. (2016). The glutamate–glutamine cycle in epilepsy. In The Glutamate/GABA-Glutamine Cycle, pages 351–400. Springer.
[Eulenburg and Gomeza, 2010] Eulenburg, V. and Gomeza, J. (2010). Neurotransmitter transporters expressed in glial cells as regulators of synapse function. Brain research reviews, 63(1-2):103–112.
[Eytan and Marom, 2006] Eytan, D. and Marom, S. (2006). Dynamics and effective topology underlying synchronization in networks of cortical neurons. Journal of Neuroscience, 26(33):8465–8476.
[Falcucci et al., 2019] Falcucci, R. M., Wertz, R., Green, J. L., Meucci, O., Salvino, J., and Fontana, A. C. K. (2019). Novel positive allosteric modulators of glutamate transport have neuroprotective properties in an in vitro excitotoxic model. ACS chemical neuroscience, 10(8):3437–3453.
[Figley and Stroman, 2011] Figley, C. R. and Stroman, P. W. (2011). The role (s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. European Journal of Neuroscience, 33(4):577–588.
[Flanagan et al., 2018] Flanagan, B., McDaid, L., Wade, J., Wong-Lin, K., and Harkin, J. (2018). A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability. PLoS computational biology, 14(4): e1006040.
[Fries, 2005] Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in cognitive sciences, 9(10):474–480.
[Gandhi and Stevens, 2003] Gandhi, S. P. and Stevens, C. F. (2003). Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature, 423(6940):607.
[Giaume et al., 2010] Giaume, C., Koulakoff, A., Roux, L., Holcman, D., and Rouach, N. (2010). Astroglial networks: a step further in neuroglial and gliovascular interactions. Nature Reviews Neuroscience, 11(2):87.
[Gross and Kowalski, 1999] Gross, G. W. and Kowalski, J. M. (1999). Origins of activity patterns in self-organizing neuronal networks in vitro. Journal of Intelligent Material Systems and Structures, 10(7):558–564.
[Halassa et al., 2007] Halassa, M. M., Fellin, T., and Haydon, P. G. (2007). The tripartite synapse: roles for gliotransmission in health and disease. Trends in molecular medicine, 13(2):54–63.
[Halassa and Haydon, 2010] Halassa, M. M. and Haydon, P. G. (2010). Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annual review of physiology, 72:335–355.
[Han et al., 2013] Han, X., Chen, M., Wang, F., Windrem, M., Wang, S., Shanz, S., Xu, Q., Oberheim, N. A., Bekar, L., Betstadt, S., et al. (2013). Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell stem cell, 12(3):342–353.
[Harada et al., 2016] Harada, K., Kamiya, T., and Tsuboi, T. (2016). Gliotransmitter release from astrocytes: functional, developmental and pathological implications in the brain. Frontiers in neuroscience, 9:499.
[Hardingham et al., 2010] Hardingham, N. R., Read, J. C., Trevelyan, A. J., Nelson, J. C., Jack, J. J. B., and Bannister, N. J. (2010). Quantal analysis reveals a functional correlation between presynaptic and postsynaptic efficacy in excitatory connections from rat neocortex. Journal of Neuroscience, 30(4):1441–1451.
[Harris and Sultan, 1995] Harris, K. and Sultan, P. (1995). Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal ca1 synapses. Neuropharmacology, 34(11):1387–1395.
[Häusser et al., 2000] Häusser, M., Spruston, N., and Stuart, G. J. (2000). Diversity and dynamics of dendritic signaling. Science, 290(5492):739–744.
[Haustein et al., 2014] Haustein, M. D., Kracun, S., Lu, X.-H., Shih, T. P., Jackson-Weaver, O., Tong, X., Xu, J., Yang, X. W., O’Dell, T. J., Marvin, J. S., Ellisman, M. H., Bushong, E. A., Looger, L. L., and Khakh, B. S. (2014). Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway. Neuron, 82:413–429.
[Haydon, 2001] Haydon, P. G. (2001). Glia: listening and talking to the synapse. Nature Reviews Neuroscience, 2(3):185.
[Henneberger et al., 2010] Henneberger, C., Papouin, T., Oliet, S. H., and Rusakov, D. A. (2010). Longterm potentiation depends on release of d-serine from astrocytes. Nature, 463(7278):232.
[Hertz et al., 1999] Hertz, L., Dringen, R., Schousboe, A., and Robinson, S. R. (1999). Astrocytes: glutamate producers for neurons. Journal of neuroscience research, 57(4):417–428.
[Holmseth et al., 2009] Holmseth, S., Scott, H., Real, K., Lehre, K., Leergaard, T., Bjaalie, J., and Danbolt, N. (2009). The concentrations and distributions of three c-terminal variants of the glt1 (eaat2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience, 162(4):1055–1071.
[Huang et al., 2017] Huang, C.-H., Huang, Y.-T., Chen, C.-C., and Chan, C. (2017). Propagation and synchronization of reverberatory bursts in developing cultured networks. Journal of computational neuroscience, 42(2):177–185.
[Huang et al., 2015] Huang, Y.-T., Chang, C.-H., Lai, P.-Y., and Chan, C. (2015). Effects of glia on the synchronized bursting in cultured neuronal networks. Chinese Journal of Physics.
[Hutchison et al., 2004] Hutchison, W. D., Dostrovsky, J. O., Walters, J. R., Courtemanche, R., Boraud, T., Goldberg, J., and Brown, P. (2004). Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. Journal of Neuroscience, 24(42):9240–9243.
[Iida et al., 2018] Iida, S., Shimba, K., Sakai, K., Kotani, K., and Jimbo, Y. (2018). Synchronous firing patterns of induced pluripotent stem cell-derived cortical neurons depend on the network structure consisting of excitatory and inhibitory neurons. Biochemical and biophysical research communications, 501(1):152–157.
[Izhikevich et al., 2003] Izhikevich, E. M., Desai, N. S., Walcott, E. C., and Hoppensteadt, F. C. (2003). Bursts as a unit of neural information: selective communication via resonance. Trends in neurosciences, 26(3):161–167.
[Jimbo et al., 2000] Jimbo, Y., Kawana, A., Parodi, P., and Torre, V. (2000). The dynamics of a neuronal culture of dissociated cortical neurons of neonatal rats. Biological cybernetics, 83(1):1–20.
[John et al., 2012] John, C. S., Smith, K. L., Veer, A. V., Gompf, H. S., Carlezon Jr, W. A., Cohen, B. M., Öngür, D., and Bechtholt-Gompf, A. J. (2012). Blockade of astrocytic glutamate uptake in the prefrontal cortex induces anhedonia. Neuropsychopharmacology, 37(11):2467.
[Kamioka et al., 1996] Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H. P., and Kawana, A. (1996). Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures. Neuroscience letters, 206(2-3):109–112.
[Kandel et al., 2000] Kandel, E. R., Schwartz, J. H., Jessell, T. M., of Biochemistry, D., Jessell, M. B. T., Siegelbaum, S., and Hudspeth, A. (2000). Principles of neural science, volume 4. McGraw-hill New York.
[Kavalali et al., 1999] Kavalali, E. T., Klingauf, J., and Tsien, R. W. (1999). Activity-dependent regulation of synaptic clustering in a hippocampal culture system. Proceedings of the National Academy of Sciences, 96(22):12893–12900.
[Keefer et al., 2001] Keefer, E. W., Norton, S. J., Boyle, N. A., Talesa, V., and Gross, G. W. (2001). Acute toxicity screening of novel ache inhibitors using neuronal networks on microelectrode arrays. Neurotoxicology, 22(1):3–12.
[Kim et al., 2007] Kim, M.-J., Oh, S.-J., Park, S.-H., Kang, H.-J., Won, M. H., Kang, T.-C., Park, J.-B., Kim, J.-I., Kim, J., and Lee, J.-Y. (2007). Neuronal loss in primary long-term cortical culture involves neurodegeneration-like cell death via calpain and p35 processing, but not developmental apoptosis or aging. Experimental & molecular medicine, 39(1):14–26.
[Kimelberg, 2010] Kimelberg, H. K. (2010). Functions of mature mammalian astrocytes: a current view. The Neuroscientist, 16(1):79–106.
[Kortagere et al., 2017] Kortagere, S., Mortensen, O. V., Xia, J., Lester, W., Fang, Y., Srikanth, Y., Salvino, J. M., and Fontana, A. C. (2017). Identification of novel allosteric modulators of glutamate transporter eaat2. ACS chemical neuroscience, 9(3):522–534.
[Krahe and Gabbiani, 2004] Krahe, R. and Gabbiani, F. (2004). Burst firing in sensory systems. Nature Reviews Neuroscience, 5(1):13.
[Kudela et al., 2003] Kudela, P., Franaszczuk, P. J., and Bergey, G. K. (2003). Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior. Biological cybernetics, 88(4):276–285.
[Lau and Bi, 2005] Lau, P.-M. and Bi, G.-Q. (2005). Synaptic mechanisms of persistent reverberatory activity in neuronal networks. Proceedings of the National Academy of Sciences, 102(29):10333–10338.
[Lefebvre et al., 2016] Lefebvre, B., Yger, P., and Marre, O. (2016). Recent progress in multi-electrode spike sorting methods. Journal of Physiology-Paris, 110(4):327–335.
[Lehre and Danbolt, 1998] Lehre, K. P. and Danbolt, N. C. (1998). The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. Journal of Neuroscience, 18(21):8751–8757.
[Lindner et al., 2004] Lindner, B., Garcıa-Ojalvo, J., Neiman, A., and Schimansky-Geier, L. (2004). Effects of noise in excitable systems. Physics reports, 392(6):321–424.
[Lisman, 1997] Lisman, J. E. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in neurosciences, 20(1):38–43.
[Lodish et al., 2000] Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., and Darnell, J. (2000). Neurotransmitters, synapses, and impulse transmission. In Molecular Cell Biology. 4th edition. WH Freeman.
[Maccione et al., 2009] Maccione, A., Gandolfo, M., Massobrio, P., Novellino, A., Martinoia, S., and Chiappalone, M. (2009). A novel algorithm for precise identification of spikes in extracellularly recorded neuronal signals. Journal of neuroscience methods, 177(1):241–249.
[Maeda et al., 1995] Maeda, E., Robinson, H., and Kawana, A. (1995). The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons. Journal of Neuroscience, 15(10):6834–6845.
[Martin et al., 1990] Martin, D. P., Wallace, T. L., and Johnson, E. (1990). Cytosine arabinoside kills postmitotic neurons in a fashion resembling trophic factor deprivation: evidence that a deoxycytidinedependent process may be required for nerve growth factor signal transduction. Journal of Neuroscience, 10(1):184–193.
[Marvin et al., 2013] Marvin, J. S., Borghuis, B. G., Tian, L., Cichon, J., Harnett, M. T., Akerboom, J., Gordus, A., Renninger, S. L., Chen, T.-W., Bargmann, C. I., et al. (2013). An optimized fluorescent probe for visualizing glutamate neurotransmission. Nature methods, 10(2):162.
[McAuley and Marsden, 2000] McAuley, J. and Marsden, C. (2000). Physiological and pathological tremors and rhythmic central motor control. Brain, 123(8):1545–1567.
[Mehta et al., 2008] Mehta, B., Begum, G., Joshi, N. B., and Joshi, P. G. (2008). Nitric oxide–mediated modulation of synaptic activity by astrocytic p2y receptors. The Journal of general physiology, 132(3):339–349.
[Meister et al., 1991] Meister, M., Wong, R., Baylor, D. A., and Shatz, C. J. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science, 252(5008):939–943.
[Meldrum, 2000] Meldrum, B. S. (2000). Glutamate as a neurotransmitter in the brain: review of physiology and pathology. The Journal of nutrition, 130(4):1007S–1015S.
[Meshul et al., 1987] Meshul, C. K., Seil, F. J., and Herndon, R. M. (1987). Astrocytes play a role in regulation of synaptic density. Brain research, 402(1):139–145.
[Molyneaux et al., 2007] Molyneaux, B. J., Arlotta, P., Menezes, J. R., and Macklis, J. D. (2007). Neuronal subtype specification in the cerebral cortex. Nature reviews neuroscience, 8(6):427–437.
[Montana et al., 2006] Montana, V., Malarkey, E. B., Verderio, C., Matteoli, M., and Parpura, V. (2006). Vesicular transmitter release from astrocytes. Glia, 54(7):700–715.
[Morris and Lecar, 1981] Morris, C. and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical journal, 35(1):193–213.
[Mu et al., 2019] Mu, Y., Bennett, D. V., Rubinov, M., Narayan, S., Yang, C.-T., Tanimoto, M., Mensh, B. D., Looger, L. L., and Ahrens, M. B. (2019). Glia accumulate evidence that actions are futile and suppress unsuccessful behavior. Cell.
[Muramoto et al., 1993] Muramoto, K., Ichikawa, M., Kawahara, M., Kobayashi, K., and Kuroda, Y. (1993). Frequency of synchronous oscillations of neuronal activity increases during development and is correlated to the number of synapses in cultured cortical neuron networks. Neuroscience letters, 163(2):163–165.
[Murphy-Royal et al., 2015] Murphy-Royal, C., Dupuis, J., Varela, J. A., Panatier, A., Pinson, B., Baufreton, J., Groc, L., and Oliet, S. (2015). Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nature Neuroscience, 18:219–226.
[Nedergaard, 1994] Nedergaard, M. (1994). Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science, 263(5154):1768–1771.
[Nedergaard et al., 2003] Nedergaard, M., Ransom, B., and Goldman, S. A. (2003). New roles for astrocytes: redefining the functional architecture of the brain. Trends in neurosciences, 26(10):523–530.
[Oberheim et al., 2006] Oberheim, N. A., Wang, X., Goldman, S., and Nedergaard, M. (2006). Astrocytic complexity distinguishes the human brain. Trends in neurosciences, 29(10):547–553.
[Oliet et al., 2001] Oliet, S. H., Piet, R., and Poulain, D. A. (2001). Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science, 292(5518):923–926.
[Olsen et al., 2015] Olsen, M. L., Khakh, B. S., Skatchkov, S. N., Zhou, M., Lee, C. J., and Rouach, N. (2015). New insights on astrocyte ion channels: critical for homeostasis and neuron-glia signaling. Journal of Neuroscience, 35(41):13827–13835.
[Olsen and Sontheimer, 2008] Olsen, M. L. and Sontheimer, H. (2008). Functional implications for kir4. 1 channels in glial biology: from k+ buffering to cell differentiation. Journal of neurochemistry, 107(3):589–601.
[Panatier et al., 2011] Panatier, A., Vallée, J., Haber, M., Murai, K. K., Lacaille, J.-C., and Robitaille, R. (2011). Astrocytes are endogenous regulators of basal transmission at central synapses. Cell, 146(5):785–798.
[Pareti, 2007] Pareti, G. (2007). The all-or-none law in skeletal muscle and nerve fibres. Archives italiennes de biologie, 145(1):39–54.
[Parpura and Haydon, 2000] Parpura, V. and Haydon, P. G. (2000). Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proceedings of the National Academy of Sciences, 97(15):8629–8634.
[Pasquale et al., 2008] Pasquale, V., Massobrio, P., Bologna, L., Chiappalone, M., and Martinoia, S. (2008). Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience, 153(4):1354–1369.
[Pasti et al., 1997] Pasti, L., Volterra, A., Pozzan, T., and Carmignoto, G. (1997). Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. Journal of Neuroscience, 17(20):7817–7830.
[Peters and Palay, 1991] Peters, A. and Palay, S. (1991). Webster hd. the fine structure of the nervous system: neurons and their supporting cells. New York: Oxford University Press, 18(494):10–23.
[Pikovsky et al., 2003] Pikovsky, A., Kurths, J., Rosenblum, M., and Kurths, J. (2003). Synchronization: a universal concept in nonlinear sciences, volume 12. Cambridge university press.
[Potter and DeMarse, 2001] Potter, S. M. and DeMarse, T. B. (2001). A new approach to neural cell culture for long-term studies. Journal of neuroscience methods, 110(1-2):17–24.
[Reinagel et al., 1999] Reinagel, P., Godwin, D., Sherman, S. M., and Koch, C. (1999). Encoding of visual information by lgn bursts. Journal of neurophysiology, 81(5):2558–2569.
[Rizzoli and Betz, 2005] Rizzoli, S. O. and Betz, W. J. (2005). Synaptic vesicle pools. Nature Reviews Neuroscience, 6(1):57.
[Robinson et al., 1993] Robinson, H., Kawahara, M., Jimbo, Y., Torimitsu, K., Kuroda, Y., and Kawana, A. (1993). Periodic synchronized bursting and intracellular calcium transients elicited by low magnesium in cultured cortical neurons. Journal of neurophysiology, 70(4):1606–1616.
[Romanos et al., 2019] Romanos, J., Benke, D., Saab, A. S., Zeilhofer, H. U., and Santello, M. (2019). Differences in glutamate uptake between cortical regions impact neuronal nmda receptor activation. Communications biology, 2(1):1–15.
[Rothstein et al., 1996] Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R. W., Kanai, Y., Hediger, M. A., Wang, Y., Schielke, J. P., et al. (1996). Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron, 16(3):675–686.
[Rouach et al., 2008] Rouach, N., Koulakoff, A., Abudara, V., Willecke, K., and Giaume, C. (2008). Astroglial metabolic networks sustain hippocampal synaptic transmission. science, 322(5907):1551–1555.
[Sahlender et al., 2014] Sahlender, D. A., Savtchouk, I., and Volterra, A. (2014). What do we know about gliotransmitter release from astrocytes? Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1654):20130592.
[Salinas and Sejnowski, 2001] Salinas, E. and Sejnowski, T. J. (2001). Book review: gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. The Neuroscientist, 7(5):430–440.
[Schiff et al., 1994] Schiff, S. J., Jerger, K., Duong, D. H., Chang, T., Spano, M. L., and Ditto, W. L. (1994). Controlling chaos in the brain. Nature, 370(6491):615–620.
[Schikorski and Stevens, 1997] Schikorski, T. and Stevens, C. F. (1997). Quantitative ultrastructural analysis of hippocampal excitatory synapses. Journal of Neuroscience, 17(15):5858–5867.
[Schroeter et al., 2015] Schroeter, M. S., Charlesworth, P., Kitzbichler, M. G., Paulsen, O., and Bullmore, E. T. (2015). Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro. Journal of Neuroscience, 35(14):5459–5470.
[Scofield and Kalivas, 2014] Scofield, M. D. and Kalivas, P. W. (2014). Astrocytic dysfunction and addiction: consequences of impaired glutamate homeostasis. The Neuroscientist, 20(6):610–622.
[Sherman, 2001] Sherman, S. M. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in neurosciences, 24(2):122–126.
[Shimamoto et al., 1998] Shimamoto, K., Lebrun, B., Yasuda-Kamatani, Y., Sakaitani, M., Shigeri, Y., Yumoto, N., and Nakajima, T. (1998). Dl-threo-_-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Molecular pharmacology, 53(2):195–201.
[Soriano et al., 2008] Soriano, J., Martínez, M. R., Tlusty, T., and Moses, E. (2008). Development of input connections in neural cultures. Proceedings of the National Academy of Sciences, 105(37):13758–13763.
[Spira and Hai, 2013] Spira, M. E. and Hai, A. (2013). Multi-electrode array technologies for neuroscience and cardiology. Nature nanotechnology, 8(2):83.
[Sulston et al., 1983] Sulston, J. E., Schierenberg, E., White, J. G., Thomson, J. N., et al. (1983). The embryonic cell lineage of the nematode caenorhabditis elegans. Developmental biology, 100(1):64–119.
[Taketani and Baudry, 2010] Taketani, M. and Baudry, M. (2010). Advances in network electrophysiology. Springer.
[Tallon-Baudry et al., 2004] Tallon-Baudry, C., Mandon, S., Freiwald, W. A., and Kreiter, A. K. (2004). Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. Cerebral cortex, 14(7):713–720.
[Tanaka et al., 1997] Tanaka, K., Watase, K., Manabe, T., Yamada, K., Watanabe, M., Takahashi, K., Iwama, H., Nishikawa, T., Ichihara, N., Kikuchi, T., et al. (1997). Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter glt-1. Science, 276(5319):1699–1702.
[Tani et al., 2014] Tani, H., Dulla, C. G., Farzampour, Z., Taylor-Weiner, A., Huguenard, J. R., and Reimer, R. J. (2014). A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron, 81(4):888–900.
[Taschenberger et al., 2005] Taschenberger, H., Scheuss, V., and Neher, E. (2005). Release kinetics, quantal parameters and their modulation during short-term depression at a developing synapse in the rat cns. The Journal of physiology, 568(2):513–537.
[Timme and Lapish, 2018] Timme, N. M. and Lapish, C. (2018). A tutorial for information theory in neuroscience. ENeuro, 5(3).
[Traub, 2003] Traub, R. D. (2003). Fast oscillations and epilepsy. Epilepsy currents, 3(3):77–79.
[Tsodyks et al., 2000] Tsodyks, M., Uziel, A., Markram, H., et al. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. J Neurosci, 20(1):825–835.
[Tsodyks and Markram, 1997] Tsodyks, M. V. and Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the national academy of sciences, 94(2):719–723.
[Ullian et al., 2001] Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., and Barres, B. A. (2001). Control of synapse number by glia. Science, 291(5504):657–661.
[van der Stelt et al., 2004] van der Stelt, O., Belger, A., and Lieberman, J. A. (2004). Macroscopic fast neuronal oscillations and synchrony in schizophrenia. Proceedings of the National Academy of Sciences, 101(51):17567–17568.
[Vardi et al., 2016] Vardi, R., Goldental, A., Sardi, S., Sheinin, A., and Kanter, I. (2016). Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity. Scientific reports, 6:36228.
[Ventura and Harris, 1999] Ventura, R. and Harris, K. M. (1999). Three-dimensional relationships between hippocampal synapses and astrocytes. Journal of Neuroscience, 19(16):6897–6906.
[Verdugo et al., 2019] Verdugo, C. D., Myren-Svelstad, S., Aydin, E., Van Hoeymissen, E., Deneubourg, C., Vanderhaeghe, S., Vancraeynest, J., Pelgrims, R., Cosacak, M. I., Muto, A., et al. (2019). Glia-neuron interactions underlie state transitions to generalized seizures. Nature communications, 10(1):1–13.
[Voigt et al., 2001] Voigt, T., Opitz, T., and de Lima, A. D. (2001). Synchronous oscillatory activity in immature cortical network is driven by gabaergic preplate neurons. Journal of Neuroscience, 21(22):8895–8905.
[Volman et al., 2007] Volman, V., Gerkin, R. C., Lau, P.-M., Ben-Jacob, E., and Bi, G.-Q. (2007). Calcium and synaptic dynamics underlying reverberatory activity in neuronal networks. Physical biology, 4(2):91.
[Wagenaar et al., 2006] Wagenaar, D. A., Pine, J., and Potter, S. M. (2006). An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC neuroscience, 7(1):11.
[Wallace and Johnson, 1989] Wallace, T. L. and Johnson, E. (1989). Cytosine arabinoside kills postmitotic neurons: evidence that deoxycytidine may have a role in neuronal survival that is independent of dna
synthesis. Journal of Neuroscience, 9(1):115–124.
[Waniewski and Martin, 1986] Waniewski, R. A. and Martin, D. L. (1986). Exogenous glutamate is metabolized to glutamine and exported by rat primary astrocyte cultures. Journal of neurochemistry, 47(1):304–313.
[Werner et al., 2001] Werner, P., Pitt, D., and Raine, C. S. (2001). Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Annals of neurology, 50(2):169–180.
[Woo et al., 2012] Woo, D. H., Han, K.-S., Shim, J. W., Yoon, B.-E., Kim, E., Bae, J. Y., Oh, S.-J., Hwang, E. M., Marmorstein, A. D., Bae, Y. C., et al. (2012). Trek-1 and best1 channels mediate fast and slow glutamate release in astrocytes upon gpcr activation. Cell, 151(1):25–40.
[Zhang et al., 2003] Zhang, J.-m., Wang, H.-k., Ye, C.-q., Ge, W., Chen, Y., Jiang, Z.-l., Wu, C.-p., Poo, M.-m., and Duan, S. (2003). Atp released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron, 40(5):971–982.
[Zhang et al., 2018] Zhang, W., Muravina, V., Azencott, R., Chu, Z. D., and Paldino, M. J. (2018). Mutual information better quantifies brain network architecture in children with epilepsy. Computational and mathematical methods in medicine, 2018.
[Ziburkus et al., 2006] Ziburkus, J., Cressman, J. R., Barreto, E., and Schiff, S. J. (2006). Interneuron and pyramidal cell interplay during in vitro seizure-like events. Journal of neurophysiology, 95(6):3948–3954.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔