|
1. Green, J.M. and R.G. Matthews, Folate Biosynthesis, Reduction, and Polyglutamylation and the Interconversion of Folate Derivatives. EcoSal Plus, 2007. 2(2). 2. Fox, J.T. and P.J. Stover, Folate-mediated one-carbon metabolism. Vitam Horm, 2008. 79: p. 1-44. 3. Stover, P.J. and M.S. Field, Trafficking of intracellular folates. Adv Nutr, 2011. 2(4): p. 325-31. 4. Stover, P.J., One-carbon metabolism-genome interactions in folate-associated pathologies. J Nutr, 2009. 139(12): p. 2402-5. 5. Fan, J., J. Ye, J.J. Kamphorst, T. Shlomi, C.B. Thompson, and J.D. Rabinowitz, Quantitative flux analysis reveals folate-dependent NADPH production. Nature, 2014. 510(7504): p. 298-302. 6. Miller, A.L., The methylation, neurotransmitter, and antioxidant connections between folate and depression. Altern Med Rev, 2008. 13(3): p. 216-26. 7. Czeizel, A.E., I. Dudas, A. Vereczkey, and F. Banhidy, Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects. Nutrients, 2013. 5(11): p. 4760-75. 8. Bailey, L.B., P.J. Stover, H. McNulty, M.F. Fenech, J.F. Gregory, 3rd, J.L. Mills, C.M. Pfeiffer, Z. Fazili, M. Zhang, P.M. Ueland, A.M. Molloy, M.A. Caudill, B. Shane, R.J. Berry, R.L. Bailey, D.B. Hausman, R. Raghavan, and D.J. Raiten, Biomarkers of Nutrition for Development-Folate Review. J Nutr, 2015. 145(7): p. 1636s-1680s. 9. Robinson, N., P. Grabowski, and I. Rehman, Alzheimer's disease pathogenesis: Is there a role for folate? Mech Ageing Dev, 2018. 174: p. 86-94. 10. Green, R. and A. Datta Mitra, Megaloblastic Anemias: Nutritional and Other Causes. Med Clin North Am, 2017. 101(2): p. 297-317. 11. Stanhewicz, A.E. and W.L. Kenney, Role of folic acid in nitric oxide bioavailability and vascular endothelial function. Nutr Rev, 2017. 75(1): p. 61-70. 12. Pieroth, R., S. Paver, S. Day, and C. Lammersfeld, Folate and Its Impact on Cancer Risk. Curr Nutr Rep, 2018. 7(3): p. 70-84. 13. Kao, T.T., C.Y. Chu, G.H. Lee, T.H. Hsiao, N.W. Cheng, N.S. Chang, B.H. Chen, and T.F. Fu, Folate deficiency-induced oxidative stress contributes to neuropathy in young and aged zebrafish--implication in neural tube defects and Alzheimer's diseases. Neurobiol Dis, 2014. 71: p. 234-44. 14. Balashova, O.A., O. Visina, and L.N. Borodinsky, Folate receptor 1 is necessary for neural plate cell apical constriction during Xenopus neural tube formation. Development, 2017. 144(8): p. 1518-1530. 15. Keyte, A. and M.R. Hutson, The neural crest in cardiac congenital anomalies. Differentiation, 2012. 84(1): p. 25-40. 16. Howe, K., M.D. Clark, C.F. Torroja, J. Torrance, C. Berthelot, M. Muffato, J.E. Collins, S. Humphray, K. McLaren, L. Matthews, S. McLaren, I. Sealy, M. Caccamo, C. Churcher, C. Scott, J.C. Barrett, R. Koch, G.J. Rauch, S. White, W. Chow, B. Kilian, L.T. Quintais, J.A. Guerra-Assuncao, Y. Zhou, Y. Gu, J. Yen, J.H. Vogel, T. Eyre, S. Redmond, R. Banerjee, J. Chi, B. Fu, E. Langley, S.F. Maguire, G.K. Laird, D. Lloyd, E. Kenyon, S. Donaldson, H. Sehra, J. Almeida- King, J. Loveland, S. Trevanion, M. Jones, M. Quail, D. Willey, A. Hunt, J. Burton, S. Sims, K. McLay, B. Plumb, J. Davis, C. Clee, K. Oliver, R. Clark, C. Riddle, D. Elliot, G. Threadgold, G. Harden, D. Ware, S. Begum, B. Mortimore, G. Kerry, P. Heath, B. Phillimore, A. Tracey, N. Corby, M. Dunn, C. Johnson, J. Wood, S. Clark, S. Pelan, G. Griffiths, M. Smith, R. Glithero, P. Howden, N. Barker, C. Lloyd, C. Stevens, J. Harley, K. Holt, G. Panagiotidis, J. Lovell, H. Beasley, C. Henderson, D. Gordon, K. Auger, D. Wright, J. Collins, C. Raisen, L. Dyer, K. Leung, L. Robertson, K. Ambridge, D. Leongamornlert, S. McGuire, R. Gilderthorp, C. Griffiths, D. Manthravadi, S. Nichol, G. Barker, S. Whitehead, M. Kay, J. Brown, C. Murnane, E. Gray, M. Humphries, N. Sycamore, D. Barker, D. Saunders, J. Wallis, A. Babbage, S. Hammond, M. Mashreghi-Mohammadi, L. Barr, S. Martin, P. Wray, A. Ellington, N. Matthews, M. Ellwood, R. Woodmansey, G. Clark, J. Cooper, A. Tromans, D. Grafham, C. Skuce, R. Pandian, R. Andrews, E. Harrison, A. Kimberley, J. Garnett, N. Fosker, R. Hall, P. Garner, D. Kelly, C. Bird, S. Palmer, I. Gehring, A. Berger, C.M. Dooley, Z. Ersan-Urun, C. Eser, H. Geiger, M. Geisler, L. Karotki, A. Kirn, J. Konantz, M. Konantz, M. Oberlander, S. Rudolph-Geiger, M. Teucke, C. Lanz, G. Raddatz, K. Osoegawa, B. Zhu, A. Rapp, S. Widaa, C. Langford, F. Yang, S.C. Schuster, N.P. Carter, J. Harrow, Z. Ning, J. Herrero, S.M. Searle, A. Enright, R. Geisler, R.H. Plasterk, C. Lee, M. Westerfield, P.J. de Jong, L.I. Zon, J.H. Postlethwait, C. Nusslein-Volhard, T.J. Hubbard, H. Roest Crollius, J. Rogers and D.L. Stemple, The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): p. 498-503. 17. McGrath, P. and C.Q. Li, Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today, 2008. 13(9-10): p. 394-401. 18. Liu, J., Y. Zhou, X. Qi, J. Chen, W. Chen, G. Qiu, Z. Wu, and N. Wu, CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling. Hum Genet, 2017. 136(1): p. 1-12. 19. Traver, D., B.H. Paw, K.D. Poss, W.T. Penberthy, S. Lin, and L.I. Zon, Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol, 2003. 4(12): p. 1238-46. 20. Westerfield, M., The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish Danio ( Brachydanio Rerio). 2007: University of Oregon. 21. Detrich, H.W., 3rd, M.W. Kieran, F.Y. Chan, L.M. Barone, K. Yee, J.A. Rundstadler, S. Pratt, D. Ransom, and L.I. Zon, Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci U S A, 1995. 92(23): p. 10713-7. 22. Agalou, A., M. Thrapsianiotis, A. Angelis, A. Papakyriakou, A.L. Skaltsounis, N. Aligiannis, and D. Beis, Identification of Novel Melanin Synthesis Inhibitors From Crataegus pycnoloba Using an in Vivo Zebrafish Phenotypic Assay. Front Pharmacol, 2018. 9: p. 265. 23. Snyder, J.R., A. Hall, L. Ni-Komatsu, S.M. Khersonsky, Y.T. Chang, and S.J. Orlow, Dissection of melanogenesis with small molecules identifies prohibitin as a regulator. Chem Biol, 2005. 12(4): p. 477-84. 24. Peterson, S.M. and J.L. Freeman, RNA isolation from embryonic zebrafish and cDNA synthesis for gene expression analysis. J Vis Exp, 2009(30). 25. Yen, H.J., M.K. Tayeh, R.F. Mullins, E.M. Stone, V.C. Sheffield, and D.C. Slusarski, Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer's vesicle cilia function. Hum Mol Genet, 2006. 15(5): p. 667-77. 26. Li, X.S., S. Li, P. Wynveen, K. Mork, and G. Kellermann, Development and validation of a specific and sensitive LC-MS/MS method for quantification of urinary catecholamines and application in biological variation studies. Anal Bioanal Chem, 2014. 406(28): p. 7287-97. 27. Santos-Fandila, A., E. Vazquez, A. Barranco, A. Zafra-Gomez, A. Navalon, R. Rueda, and M. Ramirez, Analysis of 17 neurotransmitters, metabolites and precursors in zebrafish through the life cycle using ultrahigh performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2015. 1001: p. 191-201. 28. Tufi, S., P. Leonards, M. Lamoree, J. de Boer, J. Legler, and J. Legradi, Changes in Neurotransmitter Profiles during Early Zebrafish (Danio rerio) Development and after Pesticide Exposure. Environ Sci Technol, 2016. 50(6): p. 3222-30. 29. Tu, H.C., G.H. Lee, T.H. Hsiao, T.T. Kao, T.Y. Wang, J.N. Tsai, and T.F. Fu, One crisis, diverse impacts-Tissue-specificity of folate deficiency-induced circulation defects in zebrafish larvae. PLoS One, 2017. 12(11): p. e0188585. 30. Sadowski, S.L., Congenital cardiac disease in the newborn infant: past, present, and future. Crit Care Nurs Clin North Am, 2009. 21(1): p. 37-48, vi. 31. Aslinia, F., J.J. Mazza, and S.H. Yale, Megaloblastic anemia and other causes of macrocytosis. Clin Med Res, 2006. 4(3): p. 236-41. 32. Paik, E.J. and L.I. Zon, Hematopoietic development in the zebrafish. Int J Dev Biol, 2010. 54(6-7): p. 1127-37. 33. Tu, S. and N.C. Chi, Zebrafish models in cardiac development and congenital heart birth defects. Differentiation, 2012. 84(1): p. 4-16. 34. Jing, L. and L.I. Zon, Zebrafish as a model for normal and malignant hematopoiesis. Dis Model Mech, 2011. 4(4): p. 433-8. 35. Gore, A.V., K. Monzo, Y.R. Cha, W. Pan, and B.M. Weinstein, Vascular development in the zebrafish. Cold Spring Harb Perspect Med, 2012. 2(5): p. a006684. 36. Stainier, D.Y., Zebrafish genetics and vertebrate heart formation. Nat Rev Genet, 2001. 2(1): p. 39-48. 37. Gliszczyńska-Świgło, A., Folates as antioxidants. Food Chemistry, 2007. 101(4): p. 1480-1483. 38. Stanger, O. and W. Wonisch, Enzymatic and non-enzymatic antioxidative effects of folic acid and its reduced derivates. Subcell Biochem, 2012. 56: p. 131-61. 39. Ghaffari, S., Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid Redox Signal, 2008. 10(11): p. 1923-40. 40. Pirinccioglu, A.G., O. Alyan, G. Kizil, M. Kangin, and N. Beyazit, Evaluation of oxidative stress in children with congenital heart defects. Pediatr Int, 2012. 54(1): p. 94-8. 41. Hobbs, C.A., M.A. Cleves, W. Zhao, S. Melnyk, and S.J. James, Congenital heart defects and maternal biomarkers of oxidative stress. Am J Clin Nutr, 2005. 82(3): p. 598-604. 42. Poli, G., G. Leonarduzzi, F. Biasi, and E. Chiarpotto, Oxidative stress and cell signalling. Curr Med Chem, 2004. 11(9): p. 1163-82. 43. Geest, C.R. and P.J. Coffer, MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol, 2009. 86(2): p. 237-50. 44. Rose, B.A., T. Force, and Y. Wang, Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev, 2010. 90(4): p. 1507-46. 45. Murakami, M. and M. Simons, Regulation of vascular integrity. J Mol Med (Berl), 2009. 87(6): p. 571-82. 46. Dhalla, N.S., R.M. Temsah, and T. Netticadan, Role of oxidative stress in cardiovascular diseases. J Hypertens, 2000. 18(6): p. 655-73. 47. Berndt, C., G. Poschmann, K. Stuhler, A. Holmgren, and L. Brautigam, Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells. Redox Biol, 2014. 2: p. 673-8. 48. Fukui, H., K. Terai, H. Nakajima, A. Chiba, S. Fukuhara, and N. Mochizuki, S1P- Yap1 signaling regulates endoderm formation required for cardiac precursor cell migration in zebrafish. Dev Cell, 2014. 31(1): p. 128-36. 49. Escot, S., C. Blavet, S. Hartle, J.L. Duband, and C. Fournier-Thibault, Misregulation of SDF1-CXCR4 signaling impairs early cardiac neural crest cell migration leading to conotruncal defects. Circ Res, 2013. 113(5): p. 505-16. 50. Dai, X., W. Jiang, Q. Zhang, L. Xu, P. Geng, S. Zhuang, B.G. Petrich, C. Jiang, L. Peng, S. Bhattacharya, S.M. Evans, Y. Sun, J. Chen, and X. Liang, Requirement for integrin-linked kinase in neural crest migration and differentiation and outflow tract morphogenesis. BMC Biol, 2013. 11: p. 107. 51. Kirby, M.L. and M.R. Hutson, Factors controlling cardiac neural crest cell migration. Cell Adh Migr, 2010. 4(4): p. 609-21. 52. Vermillion, K.L., K.A. Lidberg, and L.S. Gammill, Cytoplasmic protein methylation is essential for neural crest migration. J Cell Biol, 2014. 204(1): p. 95- 109. 53. Lin, S.H., J. Wang, P. Saintigny, C.C. Wu, U. Giri, J. Zhang, T. Menju, L. Diao, L. Byers, J.N. Weinstein, K.R. Coombes, L. Girard, R. Komaki, Wistuba, II, H. Date, J.D. Minna, and J.V. Heymach, Genes suppressed by DNA methylation in non- small cell lung cancer reveal the epigenetics of epithelial-mesenchymal transition. BMC Genomics, 2014. 15: p. 1079. 54. Gunawan, M., N. Venkatesan, J.T. Loh, J.F. Wong, H. Berger, W.H. Neo, L.Y. Li, M.K. La Win, Y.H. Yau, T. Guo, P.C. See, S. Yamazaki, K.C. Chin, A.R. Gingras, S.G. Shochat, L.G. Ng, S.K. Sze, F. Ginhoux, and I.H. Su, The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin. Nat Immunol, 2015. 16(5): p. 505-16. 55. Zhou, Y., J. Kim, X. Yuan, and T. Braun, Epigenetic modifications of stem cells: a paradigm for the control of cardiac progenitor cells. Circ Res, 2011. 109(9): p. 1067-81. 56. Gilsbach, R., S. Preissl, B.A. Gruning, T. Schnick, L. Burger, V. Benes, A. Wurch, U. Bonisch, S. Gunther, R. Backofen, B.K. Fleischmann, D. Schubeler, and L. Hein, Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun, 2014. 5: p. 5288. 57. Serra-Juhe, C., I. Cusco, A. Homs, R. Flores, N. Toran, and L.A. Perez-Jurado, DNA methylation abnormalities in congenital heart disease. Epigenetics, 2015. 10(2): p. 167-77. 58. Zhang, Q.J. and Z.P. Liu, Histone methylations in heart development, congenital and adult heart diseases. Epigenomics, 2015. 7(2): p. 321-30. 59. Celik, H., A. Kramer, and G.A. Challen, DNA methylation in normal and malignant hematopoiesis. Int J Hematol, 2016. 103(6): p. 617-26. 60. Smith, Z.D. and A. Meissner, DNA methylation: roles in mammalian development. Nat Rev Genet, 2013. 14(3): p. 204-20. 61. Broske, A.M., L. Vockentanz, S. Kharazi, M.R. Huska, E. Mancini, M. Scheller, C. Kuhl, A. Enns, M. Prinz, R. Jaenisch, C. Nerlov, A. Leutz, M.A. Andrade-Navarro, S.E. Jacobsen, and F. Rosenbauer, DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet, 2009. 41(11): p. 1207-15. 62. Trowbridge, J.J., J.W. Snow, J. Kim, and S.H. Orkin, DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell, 2009. 5(4): p. 442-9. 63. Tu, H.C., M.Y. Lin, C.Y. Lin, T.H. Hsiao, Z.H. Wen, B.H. Chen, and T.F. Fu, Supplementation with 5-formyltetrahydrofolate alleviates ultraviolet B-inflicted oxidative damage in folate-deficient zebrafish. Ecotoxicol Environ Saf, 2019. 182: p. 109380. 64. Mort, R.L., I.J. Jackson, and E.E. Patton, The melanocyte lineage in development and disease. Development, 2015. 142(4): p. 620-32. 65. Yamaguchi, Y. and V.J. Hearing, Melanocytes and their diseases. Cold Spring Harb Perspect Med, 2014. 4(5). 66. Bush, W.D. and J.D. Simon, Quantification of Ca(2+) binding to melanin supports the hypothesis that melanosomes serve a functional role in regulating calcium homeostasis. Pigment Cell Res, 2007. 20(2): p. 134-9. 67. Riley, P.A., Melanin. Int J Biochem Cell Biol, 1997. 29(11): p. 1235-9. 68. D'Orazio, J., S. Jarrett, A. Amaro-Ortiz, and T. Scott, UV radiation and the skin. Int J Mol Sci, 2013. 14(6): p. 12222-48. 69. Goding, C.R. and H. Arnheiter, MITF-the first 25 years. Genes Dev, 2019. 33(15- 16): p. 983-1007. 70. Kawakami, A. and D.E. Fisher, The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Lab Invest, 2017. 97(6): p. 649-656. 71. Levy, C., M. Khaled, and D.E. Fisher, MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med, 2006. 12(9): p. 406-14. 72. Forshew, T., S. Khaliq, L. Tee, U. Smith, C.A. Johnson, S.Q. Mehdi, and E.R. Maher, Identification of novel TYR and TYRP1 mutations in oculocutaneous albinism. Clin Genet, 2005. 68(2): p. 182-4. 73. Tassabehji, M., V.E. Newton, and A.P. Read, Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet, 1994. 8(3): p. 251-5. 74. Wu, X. and J.A. Hammer, Melanosome transfer: it is best to give and receive. Curr Opin Cell Biol, 2014. 29: p. 1-7. 75. Park, H.Y., M. Kosmadaki, M. Yaar, and B.A. Gilchrest, Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci, 2009. 66(9): p. 1493-506. 76. Hasoun, L.Z., S.W. Bailey, K.K. Outlaw, and J.E. Ayling, Rearrangement and depletion of folate in human skin by ultraviolet radiation. Br J Dermatol, 2015. 173(4): p. 1087-90. 77. Jablonski, N.G. and G. Chaplin, Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci U S A, 2010. 107 Suppl 2: p. 8962-8. 78. Fujii, R., The regulation of motile activity in fish chromatophores. Pigment Cell Res, 2000. 13(5): p. 300-19. 79. Nascimento, A.A., J.T. Roland, and V.I. Gelfand, Pigment cells: a model for the study of organelle transport. Annu Rev Cell Dev Biol, 2003. 19: p. 469-91. 80. Aspengren, S., D. Hedberg, H.N. Skold, and M. Wallin, New insights into melanosome transport in vertebrate pigment cells. Int Rev Cell Mol Biol, 2009. 272: p. 245-302. 81. Bertoldi, M., Mammalian Dopa decarboxylase: structure, catalytic activity and inhibition. Arch Biochem Biophys, 2014. 546: p. 1-7. 82. Giardina, G., R. Montioli, S. Gianni, B. Cellini, A. Paiardini, C.B. Voltattorni, and F. Cutruzzola, Open conformation of human DOPA decarboxylase reveals the mechanism of PLP addition to Group II decarboxylases. Proc Natl Acad Sci U S A, 2011. 108(51): p. 20514-9. 83. Shih, D.F., C.D. Hsiao, M.Y. Min, W.S. Lai, C.W. Yang, W.T. Lee, and S.J. Lee, Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions. PLoS One, 2013. 8(8): p. e71741. 84. Costa, M., J.B. Furness, and J.R. McLean, The presence of aromatic L-amino acid decarboxylase in certain intestinal nerve cells. Histochemistry, 1976. 48(2): p. 129- 43. 85. Hayashi, H., H. Mizuguchi, and H. Kagamiyama, Rat liver aromatic L-amino acid decarboxylase: spectroscopic and kinetic analysis of the coenzyme and reaction intermediates. Biochemistry, 1993. 32(3): p. 812-8. 86. Holtz, P., R. Heise, and K. Lüdtke, Fermentativer Abbau von l-Dioxyphenylalanin (Dopa) durch Niere. Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie, 1938. 191(1): p. 87-118. 87. Blaschko, H., The specific action of L-dopa decarboxylase. J Physiol, 1939. 96(50): p. 50-1. 88. Woodruff, G.N., J. Poat, and P.J. Roberts, Dopaminergic systems and their regulation. 2016: Springer. 89. Brun, L., L.H. Ngu, W.T. Keng, G.S. Ch'ng, Y.S. Choy, W.L. Hwu, W.T. Lee, M.A. Willemsen, M.M. Verbeek, T. Wassenberg, L. Regal, S. Orcesi, D. Tonduti, P. Accorsi, H. Testard, J.E. Abdenur, S. Tay, G.F. Allen, S. Heales, I. Kern, M. Kato, A. Burlina, C. Manegold, G.F. Hoffmann, and N. Blau, Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology, 2010. 75(1): p. 64-71. 90. Himmelreich, N., R. Montioli, M. Bertoldi, C. Carducci, V. Leuzzi, C. Gemperle, T. Berner, K. Hyland, B. Thony, G.F. Hoffmann, C.B. Voltattorni, and N. Blau, Aromatic amino acid decarboxylase deficiency: Molecular and metabolic basis and therapeutic outlook. Mol Genet Metab, 2019. 127(1): p. 12-22. 91. Williams, J.D., E.L. Jacobson, H. Kim, M. Kim, and M.K. Jacobson, Folate in skin cancer prevention. Subcell Biochem, 2012. 56: p. 181-97. 92. Debowska, R., K. Rogiewicz, T. Iwanenko, M. Kruszewski, and I. Eris, Folic acid (Folacin): New application of a cosmetic ingredient. Kosmetische Medizin, 2005. 26(3): p. 123-129. 93. Ammar, H.O., M.M. Ghorab, D.M. Mostafa, and E.S. Ibrahim, Folic acid loaded lipid nanocarriers with promoted skin antiaging and antioxidant efficacy. Journal of drug delivery science and technology, 2016. 31: p. 72-82. 94. Gliszczynska-Swiglo, A. and M. Muzolf, pH-Dependent radical scavenging activity of folates. J Agric Food Chem, 2007. 55(20): p. 8237-42. 95. McEneny, J., C. Couston, B. McKibben, I.S. Young, and J.V. Woodside, Folate: in vitro and in vivo effects on VLDL and LDL oxidation. Int J Vitam Nutr Res, 2007. 77(1): p. 66-72. 96. Rezk, B.M., G.R. Haenen, W.J. van der Vijgh, and A. Bast, Tetrahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity. Identification of the antioxidant pharmacophore. FEBS Lett, 2003. 555(3): p. 601-5. 97. Juzeniene, A., M. Grigalavicius, L.W. Ma, and M. Juraleviciute, Folic acid and its photoproducts, 6-formylpterin and pterin-6-carboxylic acid, as generators of reactive oxygen species in skin cells during UVA exposure. J Photochem Photobiol B, 2016. 155: p. 116-21. 98. Borradale, D.C. and M.G. Kimlin, Folate degradation due to ultraviolet radiation: possible implications for human health and nutrition. Nutr Rev, 2012. 70(7): p. 414-22. 99. Smith, D.E., J.M. Hornstra, R.M. Kok, H.J. Blom, and Y.M. Smulders, Folic acid supplementation does not reduce intracellular homocysteine, and may disturb intracellular one-carbon metabolism. Clin Chem Lab Med, 2013. 51(8): p. 1643- 50. 100. Pietrzik, K., L. Bailey, and B. Shane, Folic acid and L-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet, 2010. 49(8): p. 535-48. 101. Scaglione, F. and G. Panzavolta, Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica, 2014. 44(5): p. 480-8. 102. Bailey, S.W. and J.E. Ayling, The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci U S A, 2009. 106(36): p. 15424-9. 103. Pfeiffer, C.M., M.R. Sternberg, Z. Fazili, E.A. Yetley, D.A. Lacher, R.L. Bailey, and C.L. Johnson, Unmetabolized folic acid is detected in nearly all serum samples from US children, adolescents, and adults. J Nutr, 2015. 145(3): p. 520-31. 104. Paniz, C., J.F. Bertinato, M.R. Lucena, E. De Carli, P. Amorim, G.W. Gomes, C.Z. Palchetti, M.S. Figueiredo, C.M. Pfeiffer, Z. Fazili, R. Green, and E.M. Guerra- Shinohara, A Daily Dose of 5 mg Folic Acid for 90 Days Is Associated with Increased Serum Unmetabolized Folic Acid and Reduced Natural Killer Cell Cytotoxicity in Healthy Brazilian Adults. J Nutr, 2017. 147(9): p. 1677-1685. 105. Mason, J.B., A. Dickstein, P.F. Jacques, P. Haggarty, J. Selhub, G. Dallal, and I.H. Rosenberg, A temporal association between folic acid fortification and an increase in colorectal cancer rates may be illuminating important biological principles: a hypothesis. Cancer Epidemiol Biomarkers Prev, 2007. 16(7): p. 1325-9. 106. Choi, J.H., Z. Yates, M. Veysey, Y.R. Heo, and M. Lucock, Contemporary issues surrounding folic Acid fortification initiatives. Prev Nutr Food Sci, 2014. 19(4): p. 247-60. 107. Henry, C.J., T. Nemkov, M. Casas-Selves, G. Bilousova, V. Zaberezhnyy, K.C. Higa, N.J. Serkova, K.C. Hansen, A. D'Alessandro, and J. DeGregori, Folate dietary insufficiency and folic acid supplementation similarly impair metabolism and compromise hematopoiesis. Haematologica, 2017. 102(12): p. 1985-1994. 108. Ro, H., K. Soun, E.J. Kim, and M. Rhee, Novel vector systems optimized for injecting in vitro-synthesized mRNA into zebrafish embryos. Mol Cells, 2004. 17(2): p. 373-6.
|