|
Abeare, S. (2009). Comparison of boosted regression tree, GLM and GAM performance in the standardization of yellowfin tuna catch-rate data from the gulf of Mexico Lonline fishery. Thesis. Louisiana State University and Agriculture and Mechanical College.. Lousiana State University. Alexander, R. E. (2016). A Comparison of GLM , GAM , and GWR Modeling of Fish Distribution and Abundance in Lake Ontario. University of Southern Calfornia. Baboo, D. S. S., &Devi, M. R. (2010). An Analysis of Different Resampling Methods in Coimbatore, District. Global Journal of Computer Science and Technology, 10(15), 61–66. Retrieved from http://globaljournals.org/GJCST_Volume10/10-An-Analysis-of-Different-Resampling-Methods-in-Coimbatore-District.pdf Barkley, R. a, Neill, W. H., &Gooding, R. M. (1978). Skipjack Tuna, Katsuwonus Pelamzs, Habitat Based on Temperature and Oxygen Requirements. Fishery Bulletin, 76(3), 653–662. Bowen, I. P. (2009). THE IMPACT OF FISHERIES SUBSIDIES ON TUNA SUSTAINABILITY AND TRADE IN ECUADOR. Guayaquil, Equador. Breiman, L., Friedman, J. H., Olshen, R. A., &Stone, C. J. (1984). Classification and regression trees. Classification and Regression Trees, pp. 1–358. https://doi.org/10.1201/9781315139470 Brewington, L., Frizzelle, B. G., Walsh, S. J., Mena, C, F., &Sampedro, C. (2014). The Galapagos Marine Reserve. The Galapagos Marine Reserve, Social and Interactions in the Galapagos Islands, 71–80. https://doi.org/10.1007/978-3-319-02769-2 Chai, T., &Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014 Daqamseh, S. T., Mansor, S., Pradhan, B., Billa, L., &Mahmud, A. R. (2013). Potential fish habitat mapping using MODIS-derived sea surface salinity, temperature and chlorophyll-a data: South China Sea Coastal areas, Malaysia. Geocarto International, 28(6), 546–560. https://doi.org/10.1080/10106049.2012.730065 deGaridel-Thoron, T., Rosenthal, Y., Bassinot, F., &Beaufort, L. (2005). Stable sea surface temperatures in the Western Pacific warm pool over the past 1.75 million years. Nature, 433, 294–298. https://doi.org/10.1038/nature03189 Dean, A. M., &Populus, J. (2007). Remote sensing and GIS integration. In Advances in geographic information systems and remote sensing for fisheries and aquaculture (pp. 147–189). Retrieved from ftp://ftp.fao.org/fi/Cdrom/T552/root/06.pdf Dueri, S., Faugeras, B., &Maury, O. (2012). Modelling the skipjack tuna dynamics in the Indian Ocean with APECOSM-E: Part 1. Model formulation. Ecological Modelling, 245, 41–54. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2012.02.007 Elith, J., Leathwick, J. R., &Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x Fitrianah, D., Praptono, N. H., Hidayanto, A. N., &Arymurthy, A. M. (2015). Feature Exploration for Prediction of Potential Tuna Fishing Zones. International Journal of Information and Electronics Engineering, 5(4), 270–274. https://doi.org/10.7763/ijiee.2015.v5.543 Fransen, B., Duke, S., Mcwethy, G., Walter, J., &Bilby, R. (2006). A Logistic Regression Model for Predicting the Upstream Extent of Fish Occurrence Based on Geographical Information Systems Data. North American Journal of Fisheries Management - NORTH AM J FISH MANAGE, 26, 960–975. https://doi.org/10.1577/M04-187.1 Froeschke, B. F., Tissot, P., Stunz, G. W., &Froeschke, J. T. (2013). Spatiotemporal Predictive Models for Juvenile Southern Flounder in Texas Estuaries. North American Journal of Fisheries Management, 33(4), 817–828. https://doi.org/10.1080/02755947.2013.811129 Galland, G., Rogers, A., &Nickson, A. (2016). Netting billions: A Global Valuation of Tuna. In The Pew Charitable Trusts. Retrieved from http://www.pewtrusts.org/en/research-and-analysis/reports/2016/05/netting-billions-a-global-valuation-of-tuna Gao, F., Chen, X., Guan, W., &Li, G. (2016). A new model to forecast fishing ground of Scomber japonicus in the Yellow Sea and East China Sea. Acta Oceanologica Sinica, 35(4), 74–81. https://doi.org/10.1007/s13131-015-0767-8 Gupta, A. K., Johnson, B. E., &Nagar, D. K. (2013). Testing Equality of Several Correlation Matrices. Revista Colombiana de Estadística, 36(2), 239–260. https://doi.org/10.2307/2985240 Hampton, J. (2010). Tuna Fisheries Status and Management in the Western and Central Pacific Ocean. 23. Hunt, E. B. (1966). Experiments in induction / Earl B. Hunt, Janet Marin, Philip J. Stone (P. J.Stone &J.Marin, Eds.). New York: Academic Press. IATCC. (2016). Tunas, billfishes and other pelagic species in the eastern Pacific Ocean in 2015. 02(August). Indian Ocean Tuna Commission. (2005). Executive Summary Of The Status Of The Skipjack Tuna Resource. Izenman, A. J. (2008). Modern Multivariates Statistical Techniques. London, UK: Springer. Jagannathan, S., Samraj, A., &Rajavel, M. (2012). Potential fishing zone estimation by rough cluster predictions. Proceedings of International Conference on Computational Intelligence, Modelling and Simulation, 82–87. https://doi.org/10.1109/CIMSim.2012.34 Kitchell, J. F., Neill, W. H., Dizon, A. E., &Magnuson, J. J. (1978). Bioenergetic Spectra of Skipjack and Yellowfin Tunas. The Physiological Ecology of Tunas, 357–368. https://doi.org/10.1016/b978-0-12-639180-0.50030-6 Kitts, B. (2006). Regression Trees Lecture. Data Mining, 7. Retrieved from http://www.stat.cmu.edu/~cshalizi/350-2006/lecture-10.pdf Laevastu, T., &Hayes, M. L. (1981). Fisheries Oceanography and Ecology. Fishing News Books Ltd. Leclere, J., Oberdorff, T., Belliard, J., &Leprieur, F. (2011). A comparison of modeling techniques to predict juvenile 0+ fish species occurrences in a large river system. Ecological Informatics, 6(5), 276–285. https://doi.org/10.1016/j.ecoinf.2011.05.001 Lehodey, P., Bertignac, M., Hampton, J., Lewis, A., &Picaut, J. (1997). El Nino Southern Oscillation and tuna in the western Pacific. Nature, 389(6652), 715–718. https://doi.org/10.1038/39575 Lehodey, Patrick, Andre, J. M., Bertignac, M., Hampton, J., Stoens, A., Menkes, C., …Grima, N. (1998). Predicting skipjack tuna forage distributions in the equatorial Pacific using a coupled dynamical bio-geochemical model. Fisheries Oceanography, 7(3–4), 317–325. https://doi.org/10.1046/j.1365-2419.1998.00063.x Loh, W. Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 14–23. https://doi.org/10.1002/widm.8 Mahaliyana, A. S., Jinadasa, B. K. K. K., Liyanage, N. P. P., Jayasinghe, G. D. T. M., &Jayamanne, S. C. (2015). Nutritional Composition of Skipjack Tuna (Katsuwonus pelamis) Caught from the Oceanic Waters around Sri Lankae. American Journal of Food and Nutrition, 3(4), 106–111. https://doi.org/10.12691/ajfn-3-4-3 Manel, S., Williams, H. C., &Ormerod, S. J. (2001). Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38(5), 921–931. https://doi.org/10.1046/j.1365-2664.2001.00647.x Mansor, S., Tan, C. K., Ibrahim, H. M., &Shariff, A. R. M. (2001). Sattelite Fish Forecasting in South China Sea. 22nd Asian Conference on Remote Sensing, (November). Retrieved from http://www.crisp.nus.edu.sg/~acrs2001/pdf/015venka.pdf Maunder, M. (2009). Updated indicators of stock status for skipjack tuna in the eastern Pacific Ocean. McCluney, J. K., Anderson, C. M., &Anderson, J. L. (2019). The fishery performance indicators for global tuna fisheries. Nature Communications, 10(1), 1–9. https://doi.org/10.1038/s41467-019-09466-6 McKeen, S., Wilczak, J., Grell, G., Djalalova, I., Peckham, S., Hsie, E. Y., …Mathur, R. (2005). Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004. Journal of Geophysical Research Atmospheres, 110(21), 1–16. https://doi.org/10.1029/2005JD005858 McKenna Jr., J. E., &Castiglione, C. (2014). Model distribution of Silver Chub (Macrhybopsis storeriana) in western Lake Erie. American Midland Naturalist, 171(2), 301–310. https://doi.org/10.1674/0003-0031-171.2.301 Mfc, G. L. O., &Dombrowsky, E. (2011). For the GLOBAL Ocean Sea Physical Analysis and Forecasting Products GLOBAL _ ANALYSIS _ FORECAST _ PHYS _ 001 _ 001 _ c And GLOBAL _ ANALYSIS _ FORECAST _ PHYS _ 001 _ 001 _ d. (June), 1–26. Miyake, M. P., Guillotreau, P., Sun, C.-H., &Ishimura, G. (2010). Recent developments in the tuna industry. Rome: FAO. Morgan, J. N., &Messenger, R. C. (1973). THAID, a sequential analysis program for the analysis of nominal scale dependent variables,. Retrieved from http://lib.ugent.be/catalog/rug01:001027612 Morgan, J. N., &Sonquist, J. A. (1963). Problems in the Analysis of Survey Data, and a Proposal. Journal of the American Statistical Association, 58(302), 415–434. Mugo, R., Saitoh, S. I., Nihira, A., &Kuroyama, T. (2010). Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective. Fisheries Oceanography, 19(5), 382–396. https://doi.org/10.1111/j.1365-2419.2010.00552.x Murthy, S. K., Kasif, S., &Salzberg, S. (1994). A System for Induction of Oblique Decision Trees. Journal of Artificial Intelligence Research, 2, 1–32. https://doi.org/10.1613/jair.63 Nicol, S., Menkes, C., Jurando-Molina, J., Lehodey, P., Usu, T., Kumasi, B., …Briand, K. (2014). Oceanographic characterisation of the Pacific Ocean and potential impact of climate variability on tuna stocks and their fisheries. (pp. 1–10). pp. 1–10. Secretariat of the Pacific Community (SPC). Pearce, A., &Pattiaratchi, C. (1997). Applications of satellite remote sensing to the marine environment in Western Australia. Journal of the Royal Society of Western Australia, 80(1), 1–14. Pham-Gia, T., &Choulakian, V. (2014). Distribution of the Sample Correlation Matrix and Applications. Open Journal of Statistics, 04(05), 330–344. https://doi.org/10.4236/ojs.2014.45033 Physical Oceanography Distributed Active Archive Center (PO.DAAC). (2015). PO.DAAC MODIS LEVEL 3 DATA USER GUIDE. California. Physical Oceanography Distributed Active Archive Center (PO.DAAC). (2017). Ocean Science Data Product Format Specification. Quinlan, J R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. https://doi.org/10.1007/BF00116251 Quinlan, J Ross. (1993). C4.5: Programs for Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria. Savage, N. H., Agnew, P., Davis, L. S., Ordóñez, C., Thorpe, R., Johnson, C. E., …Dalvi, M. (2013). Air quality modelling using the Met Office Unified Model (AQUM OS24-26): Model description and initial evaluation. Geoscientific Model Development, 6(2), 353–372. https://doi.org/10.5194/gmd-6-353-2013 Scaillet, O. (2004). Density estimation using inverse and reciprocal inverse Gaussian kernels. Journal of Nonparametric Statistics, 16(1–2), 217–226. https://doi.org/10.1080/10485250310001624819 Sharma, R., Ghosh, A., &Joshi, P. K. (2013). Decision tree approach for classification of remotely sensed satellite data using open source support. Journal of Earth System Science, 122(5), 1237–1247. https://doi.org/10.1007/s12040-013-0339-2 Sobang, N. B. (2014). Access to fishing grounds and adaptive strategies. The Arctic University of Norway. Solanki, H. U., Mankodi, P. C., Nayak, S. R., &Somvanshi, V. S. (2005). Evaluation of remote-sensing-based potential fishing zones (PFZs) forecast methodology. Continental Shelf Research, 25(18), 2163–2173. https://doi.org/https://doi.org/10.1016/j.csr.2005.08.025 Stéquert, B., &Marsac, F. (1989). Tropical tuna - surface fisheries in the Indian Ocean. Rome: FAO Fisheries Department. Stoens, A., Menkes, C., Dandonneau, Y., &Memery, L. (1998). New production in the equatorial Pacific: A coupled dynamical-biogeochemical model. Fisheries Oceanography, 7(3–4), 311–316. https://doi.org/10.1046/j.1365-2419.1998.00079.x Stuart, V., Platt, T., &Sathyendranath, S. (2011). The future of fisheries science in management: A remote-sensing perspective. ICES Journal of Marine Science, 68(4), 644–650. https://doi.org/10.1093/icesjms/fsq200 Thuiller, W., Araújo, M. B., &Lavorel, S. (2003). Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. Journal of Vegetation Science, 14(5), 669–680. https://doi.org/10.1111/j.1654-1103.2003.tb02199.x Trinh, R. C., Fichot, C. G., Gierach, M. M., Holt, B., Malakar, N. K., Hulley, G., &Smith, J. (2017). Application of Landsat 8 for Monitoring Impacts of Wastewater Discharge on Coastal Water Quality. Frontiers in Marine Science, 4, 329. https://doi.org/10.3389/fmars.2017.00329 Virdin, J. (2016). Tuna Fisheries. In Tuna Fisheries. https://doi.org/10.1596/28412 Wang, X., Tsokos, C. P., &Saghafi, A. (2018). Improved parameter estimation of Time Dependent Kernel Density by using Artificial Neural Networks. The Journal of Finance and Data Science, 4(3), 172–182. https://doi.org/https://doi.org/10.1016/j.jfds.2018.04.002 Weglarczyk, S. (2018). Kernel density estimation and its application. ITM Web of Conferences, 23, 37. https://doi.org/10.1051/itmconf/20182300037 Williams, P., Terawasi, P., &Reid, C. (2017). Overview of tuna fisheries in the Western and Central Pacific Ocean, including economic conditions - 2016. WCPFC Scientific Committee WCPFC-SC13-2017/GN-WP-01, (August). Zainuddin, M., Nelwan, A., Farhum, S. A., N., Hajar, M. A. I., Kurnia, M., & S. (2013). Characterizing Potential Fishing Zone of Skipjack Tuna during the Southeast Monsoon in the Bone Bay-Flores Sea Using Remotely Sensed Oceanographic Data. International Journal of Geosciences, 04(01), 259–266. https://doi.org/10.4236/ijg.2013.41A023
|