(3.238.173.209) 您好!臺灣時間:2021/05/16 21:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳徐賢
研究生(外文):Hsu-HsienChen
論文名稱:不同特性連續性侵犯旅行距離與案件距離之時空分析
論文名稱(外文):Spatial and Temporal Analysis of Travel Distance and Step Distance of Serial Sexual Offenders with Different Characteristics
指導教授:郭佩棻郭佩棻引用關係
指導教授(外文):Pei-Fen Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量及空間資訊學系
學門:工程學門
學類:測量工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:74
中文關鍵詞:連續性侵犯卡方檢定Knox時空交互檢驗法配適度檢定
外文關鍵詞:serial sexual offendertravel distancestep distanceKnox testspatio-temporal clusterLévy walk
相關次數:
  • 被引用被引用:0
  • 點閱點閱:33
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
許多犯罪學家皆指出,犯罪的發生並非是隨機的,而是根據不同犯人的習性、特徵而有特定的行為模式,並在地圖上產生犯罪熱點。在台灣現有的文獻中,大部分的文獻多針對常見財產犯罪進行分析,只有少部分的文獻針對性犯罪進行研究,尤其是連續性犯罪。此外,這些研究沒有深入探討加害人的犯罪行為模式或是犯案動機,也沒有找到可能影響犯罪模式的原因或因素。但是,性犯罪在台灣仍是無法忽視的課題。本研究分析了台灣不同類型性侵犯的時空特徵,並檢定可能影響其犯罪行為模式的相關因素。
為了比較國外與國內連續性侵犯之特性,本研究收集了三個不同區域的數據。數據集A引用 LeBeau(1992)所收集之4名美國聖地牙哥連續性侵犯之犯罪資料,4名犯人合計共犯下52起案件。數據集B引用 Hsu(2017) 所收集,24名連續性侵犯合計於台灣北部犯下100起案件。數據集C則是包含台灣中部地區78名連續性侵犯合計犯下之246起性侵案紀錄。
本研究主要方法有三:1. 利用卡方檢定 (Chi-squared test) 檢視不同變數與犯人移動距離 (travel distance) 之關係,進而找出可能影響犯人行為模式的因子。 2. 利用Knox test 分析連續性侵案件之時空特性。3. 利用配適度檢定 (goodness-of-fit test) 檢視犯人移動距離 (travel distance & step distance) 是否符合 Lévy walk 或其他重尾機率分布。其結果能幫助我們進一步了解連續性侵犯之犯罪行為模式。首先,根據Knox test之結果顯示,連續性侵案件間呈現短距離、短時間間隔之分布,其距離間隔在500公尺內,而時間間隔則在七天內。第二,根據卡方檢定之結果顯示,當犯人年齡大於40歲或未使用交通工具時,犯人多選擇在住家或附近犯案。而若犯人與被害者熟識或被害者年齡小於14歲,則會有較高的機率在犯人住家或附近發生性侵案件。
此外,本研究亦發現不同數據集的配飾度檢定結果不一致。台灣中部之性侵犯,其旅行距離(travel distance)與犯案距離(step distance)皆符合 Lévy walk分布,而聖地牙哥與台灣北部之性侵犯,其旅行距離及犯案距離則分別符合對數常態分佈及韋伯分布。表示連續性侵犯之移動特性,隨著當地資源或被害人空間分佈之不同,可能會有不同之行為模式,並非所有犯罪行為皆符合 Lévy walk分布。本研究為不同類型之性侵犯找到新的犯罪行為模式特徵,並發現可能影響其犯罪模式之相關因素。該結果能協助政府單位與警方加強部屬,以達到降低或預防犯罪之目的。
Many criminologists have pointed out that the occurrence of crime is not randomly distributed, but has specific behavior patterns according to the habits and characteristics of different offenders. In the existing studies of Taiwan, most of them focused on property crimes, such as residential burglary, vehicle theft, and robbery. However, relatively few studies concentrate on sexual crimes, especially serial sexual crimes. In addition, these scholars didn’t compare the criminal behavior pattern of different types offenders and find out the possible related factors. As the result, this study explored the spatial and temporal characteristics of serial sexual crimes and found out the crime pattern of sexual offender with different characteristics.
In order to compare the characteristics of serial sexual offenders abroad and domestically, this study collected three datasets in different regions. The first dataset includes four serial sexual offenders and a total of 52 cases in San Diego, CA, United States (LeBeau (1992). The second includes 24 serial sexual offenders and a total of 100 cases in northern Taiwan (Hsu, 2017). The third dataset includes 78 serial sexual offender and 246 cases in central Taiwan.
There are three statistical methods in this study: 1. Chi-squared test was used to examine the relationship between different variables and the travel distance of the offender, and then define important factors that may affect the behavior pattern of the offender. 2. Knox test was used to define if there are spatiotemporal cluster of serial sexual crimes. 3 the goodness-of-fit test was used to define which model fit the observed data best.

The results show that: (1) the serial sexual crimes were clustered in 500 meters and 7 days; (2) offender who is older than 40 years older who doesn’t use any transportation, tend to commit crime at home or short distance. And if victim is familiar with offender or victim’s age is younger than 14 years old, sexual crime has higher probability happened at offender’s home or short distance. In addition, this study also found inconsistent results from different datasets. The travel distance and step distance in central Taiwan follow the Lévy walk distribution, while other two datasets (San Diego and northern Taiwan) follow the log-normal distribution and Weibull distribution respectively. In other words, criminals in different regions may have different behavior patterns, not all criminal’s behaviors follow Lévy walk distribution. This result can assist government units and the police to strengthen their subordinates to achieve the goal of reducing or preventing crime.
ABSTRACT-----i
中文摘要-----iii
ACKNOWLEDGEMENT-----iv
CONTENTS-----vi
LIST OF TABLES-----viii
LIST OF FIGURES-----ix
CHAPTER 1 INTRODUCTION-----1
1.1 Background-----1
1.2 Study Goal-----5
1.3 Organization of Thesis-----6
CHAPTER 2 LITERATURE REVIEW-----8
2.1 Crime Theory-----8
2.1 Analysis of Offender’s Temporal and Spatial Characteristics-----10
2.1 Crime Factors-----12
2.2 Victim Vulnerability Factors-----15
2.3 Application of Spatial Analysis to Crimes-----16
CHAPTER 3 DATA AND METHODOLOGY-----19
3.1 Study Area-----20
3.2 Data Collection-----21
3.3 Chi-squared Test of Independence-----23
3.4 Knox Test-----26
3.5 Goodness-of-fit Test-----28
CHAPTER 4 RESULTS-----35
4.1 Chi-squared Test of Independence----35
4.2 Knox Test-----39
4.3 Goodness-of-fit Test-----41
4.3.1 Descriptive Statistics-----42
4.3.2 Goodness-of-fit Test of Travel Distance-----43
4.3.3 Goodness-of-fit Test of Step Distance-----49
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS-----55
5.1 Conclusions and Discussions-----55
5.2 Limitations and Future Works-----63
REFERENCES-----65
林俞君. (2012). 應用地理剖繪分析臺北地區連續住宅竊盜的距離遞減型態與錨點的空間預測. 臺灣大學地理環境資源學研究所學位論文, 1-143.
劉文英, & 陳慧女. (2006). 心智障礙者遭受性侵害的調查研究. 特殊教育研究學刊, 31, 23-42.
蔡德輝, & 楊士隆. (2000). 台灣地區少年強姦犯, 非暴力犯及一般少年犯罪危險因子之比較研究. 犯罪學期刊, (5), 1-47.
Acevedo, V., & Chowdhury, L. S. (2019). Modeling Sexual Violence within the Homelessness Population through an Agent-Based Approach. The PUMP Journal of Undergraduate Research, 2, 58-72.
Ackerman, J. M., & Rossmo, D. K. (2015). How far to travel? A multilevel analysis of the residence-to-crime distance. Journal of Quantitative Criminology, 31(2), 237-262.
Ahearn, S. C., Dodge, S., Simcharoen, A., Xavier, G., & Smith, J. L. (2017). A context-sensitive correlated random walk: a new simulation model for movement. International Journal of Geographical Information Science, 31(5), 867-883.
Andresen, M. A., Frank, R., & Felson, M. (2014). Age and the distance to crime. Criminology & Criminal Justice, 14(3), 314-333.
Baddeley, R. J., Franks, N. R., & Hunt, E. R. (2019). Optimal foraging and the information theory of gambling. Journal of The Royal Society Interface, 16(157), 20190162.
Bair, S. (2000). Geographic information analysis: From GIS to GIA. Crime Mapping and Analysis Program.
Balemba, S., & Beauregard, E. (2013). Where and when? Examining spatiotemporal aspects of sexual assault events. Journal of sexual aggression, 19(2), 171-190.
Baronchelli, A., & Radicchi, F. (2013). Lévy flights in human behavior and cognition. Chaos, Solitons & Fractals, 56, 101-105.
Bartumeus, F., da Luz, M. G. E., Viswanathan, G. M., & Catalan, J. (2005). Animal search strategies: a quantitative random‐walk analysis. Ecology, 86(11), 3078-3087.
Bastille-Rousseau, G., Potts, J. R., Yackulic, C. B., Frair, J. L., Ellington, E. H., & Blake, S. (2016). Flexible characterization of animal movement pattern using net squared displacement and a latent state model. Movement ecology, 4(1), 15.
Beauregard, E., Rossmo, D. K., & Proulx, J. (2007). A descriptive model of the hunting process of serial sex offenders: A rational choice perspective. Journal of Family Violence, 22(6), 449-463.
Benhamou, S. (2007). How many animals really do the Lévy walk?. Ecology, 88(8), 1962-1969.
Bernasco, W. (2019). Adolescent offenders' current whereabouts predict locations of their future crimes. PloS one, 14(1), e0210733.
Bonnetain, L., Furno, A., Krug, J., & Faouzi, N. E. E. (2019). Can We Map-Match Individual Cellular Network Signaling Trajectories in Urban Environments? Data-Driven Study. Transportation Research Record, 2673(7), 74-88.
Bovet, P., & Benhamou, S. (1988). Spatial analysis of animals' movements using a correlated random walk model. Journal of theoretical biology, 131(4), 419-433.
Brantingham, P. L., Glasser, U., Kinney, B., Singh, K., & Vajihollahi, M. (2005, October). A computational model for simulating spatial aspects of crime in urban environments. In 2005 IEEE international conference on systems, man and cybernetics (Vol. 4, pp. 3667-3674). IEEE.
Brantingham, P. J., & Tita, G. (2008). Offender mobility and crime pattern formation from first principles. In Artificial crime analysis systems: using computer simulations and geographic information systems (pp. 193-208). IGI Global.
Breslau, J., Chaturapruek, T., Kolokolnikov, T., Nccalla, S., & Yazdi, D. Crime modelling with Lévy flights and the stability of hot-spot patterns.
Brown, C. T., Liebovitch, L. S., & Glendon, R. (2007). Lévy flights in Dobe Ju/’hoansi foraging patterns. Human Ecology, 35(1), 129-138.
Butkovic, A., Mrdovic, S., Uludag, S., & Tanovic, A. (2019). Geographic profiling for serial cybercrime investigation. Digital Investigation, 28, 176-182.
Byers, J. A. (2001). Correlated random walk equations of animal dispersal resolved by simulation. Ecology, 82(6), 1680-1690.
Campbell, J. (2019). A Spatial Classification of Criminal Offenders: Moving Beyond Circle Theory with an Agent-Based Model Approach (Doctoral dissertation).
Ceccato, V. (2014). The nature of rape places. Journal of environmental psychology, 40, 97-107.
Ceccato, V., Li, G., & Haining, R. (2019). The ecology of outdoor rape: The case of Stockholm, Sweden. European journal of criminology, 16(2), 210-236.
Chawla, M., & Duhan, M. (2018). Lévy flights in metaheuristics optimization algorithms–a review. Applied Artificial Intelligence, 32(9-10), 802-821.
Chopin, J., & Caneppele, S. (2019). Geocoding child sexual abuse: An explorative analysis on journey to crime and to victimization from French police data. Child abuse & neglect, 91, 116-130.
Chopin, J., & Caneppele, S. (2019). The mobility crime triangle for sexual offenders and the role of individual and environmental factors. Sexual Abuse, 31(7), 812-836.
Chopin, J., Caneppele, S., & Beauregard, E. (2020). An analysis of mobility patterns in sexual homicide. Homicide studies, 24(2), 178-202.
Cotar, C., & Limic, V. (2009). Attraction time for strongly reinforced walks. The Annals of Applied Probability, 19(5), 1972-2007.
Crooks, A. T., & Wise, S. (2013). GIS and agent-based models for humanitarian assistance. Computers, Environment and Urban Systems, 41, 100-111.
Curtis, A., Curtis, J. W., Ajayakumar, J., Jefferis, E., & Mitchell, S. (2019). Same space–different perspectives: comparative analysis of geographic context through sketch maps and spatial video geonarratives. International Journal of Geographical Information Science, 33(6), 1224-1250.
de Melo, S. N., Pereira, D. V., Andresen, M. A., & Matias, L. F. (2018). Spatial/temporal variations of crime: A routine activity theory perspective. International journal of offender therapy and comparative criminology, 62(7), 1967-1991.
Deslauriers-Varin, N., & Beauregard, E. (2014). Consistency in crime site selection: An investigation of crime sites used by serial sex offenders across crime series. Journal of Criminal Justice, 42(2), 123-133.
Deslauriers‐Varin, N., & Beauregard, E. (2014). Unravelling crime series patterns amongst serial sex offenders: Duration, frequency, and environmental consistency. Journal of Investigative Psychology and Offender Profiling, 11(3), 253-275.
Dulce, M. (2019). Predicting criminal behavior with Lévy flights using real data from Bogotá. Documento CEDE, (2019-11).
Dybiec, B., Gudowska-Nowak, E., Barkai, E., & Dubkov, A. A. (2017). Lévy flights versus Lévy walks in bounded domains. Physical Review E, 95(5), 052102.
Edwards, A. M. (2008). Using likelihood to test for Lévy flight search patterns and for general power‐law distributions in nature. Journal of Animal Ecology, 77(6), 1212-1222.
Edwards, A. M., Phillips, R. A., Watkins, N. W., Freeman, M. P., Murphy, E. J., Afanasyev, V., ... & Viswanathan, G. M. (2007). Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature, 449(7165), 1044-1048.
Fan, S. USING SPATIAL AND SPATIAL-TEMPORAL PREDICTIVE ACCURACY MEASURES TO ACCESS THE PERFORMANCE OF THE CRIME HOTSPOT MAPPING METHODS.
Fofana, A. M., & Hurford, A. (2017). Mechanistic movement models to understand epidemic spread. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1719), 20160086.
Getz, W., Vissat, L. L., & Salter, R. (2019). Simulation and analysis of animal movement paths using numerus model builder. bioRxiv.
Gillis, J. (1955, October). Correlated random walk. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 51, No. 4, pp. 639-651). Cambridge University Press.
Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A. L. (2008). Understanding individual human mobility patterns. nature, 453(7196), 779-782.
Gönültaş, B. M., & Sahin, B. (2018). Event locations in extra-familial child sexual molestation cases: the Istanbul example. International journal of offender therapy and comparative criminology, 62(5), 1164-1178.
Guerette, R. T., Zgoba, K. M., Comerford, C., & Salerno, L. M. (2020). A test of time-constraint predictions on residence-to-crime distances among sex offenders. Victims & Offenders, 15(1), 119-139.
Haginoya, S. (2014). Offender demographics and geographical characteristics by offender means of transportation in serial residential burglaries. Psychology, crime & law, 20(6), 515-534.
Halat, H., Saberi, M., Frei, C. A., Frei, A. R., & Mahmassani, H. S. (2015). Impact of crime statistics on travel mode choice: case study of the City of Chicago, Illinois. Transportation research record, 2537(1), 81-87.
Halford, E. S. (2019). Exploring the Behaviour of Foraging Burglary Offenders and Predictive Police Interventions to Prevent and Reduce their Offending (Doctoral dissertation, University of Central Lancashire).
Hast, M., Searle, K. M., Chaponda, M., Lupiya, J., Lubinda, J., Sikalima, J., ... & Moss, W. J. (2019). The use of GPS data loggers to describe the impact of spatio-temporal movement patterns on malaria control in a high-transmission area of northern Zambia. International journal of health geographics, 18(1), 19.
Hills, T. T., Kalff, C., & Wiener, J. M. (2013). Adaptive Lévy processes and area-restricted search in human foraging. PLoS One, 8(4), e60488.
Humphries, N. E., Queiroz, N., Dyer, J. R., Pade, N. G., Musyl, M. K., Schaefer, K. M., ... & Hays, G. C. (2010). Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature, 465(7301), 1066-1069.
Ironside, K. E., Mattson, D. J., Theimer, T., Jansen, B., Holton, B., Arundel, T., ... & Edwards, T. C. (2017). Quantifying animal movement for caching foragers: the path identification index (PII) and cougars, Puma concolor. Movement ecology, 5(1), 1-17.
Irvin-Erickson, Y., & La Vigne, N. (2015). A spatio-temporal analysis of crime at Washington, DC metro rail: Stations’ crime-generating and crime-attracting characteristics as transportation nodes and places. Crime science, 4(1), 14.
James, A., Plank, M. J., & Edwards, A. M. (2011). Assessing Lévy walks as models of animal foraging. Journal of the Royal Society Interface, 8(62), 1233-1247.
Johnson, S. D. (2014). How do offenders choose where to offend? Perspectives from animal foraging. Legal and criminological psychology, 19(2), 193-210.
Keatley, D. (2018). Big data: Serial homicide database. In Pathways in Crime (pp. 111-120). Palgrave Macmillan, Cham.
Keatley, D. A., Arntfield, M., Gill, P., Clare, J., Oatley, G., Bouhana, N., & Clarke, D. D. (2019). Behaviour tracking: using geospatial and behaviour sequence analysis to map crime. Security Journal, 1-18.
Kennedy, W. G. (2012). Modelling human behaviour in agent-based models. In Agent-based models of geographical systems (pp. 167-179). Springer, Dordrecht.
Kent, J. D. (2003). Using functional distance measures when calibrating journey-to-crime distance decay algorithms.
Kent, J., Leitner, M., & Curtis, A. (2006). Evaluating the usefulness of functional distance measures when calibrating journey-to-crime distance decay functions. Computers, Environment and Urban Systems, 30(2), 181-200.
Laukkanen, M. (2007). Geographic Profiling: Using home to crime distances and crime features to predict offender home location. Åbo akademi University.
LeBeau, J. L. (1992). Four case studies illustrating the spatial-temporal analysis of serial rapists. Police Stud.: Int'l Rev. Police Dev., 15, 124.
Levine, N., & Lee, P. (2013). Journey-to-crime by gender and age group in Manchester, England. In Crime modeling and mapping using geospatial technologies (pp. 145-178). Springer, Dordrecht.
Limic, V., & Tarrès, P. (2007). Attracting edge and strongly edge reinforced walks. The Annals of Probability, 35(5), 1783-1806.
Lundrigan, S., & Czarnomski, S. (2006). Spatial characteristics of serial sexual assault in New Zealand. Australian & New Zealand Journal of Criminology, 39(2), 218-231.
Lundrigan, S., Czarnomski, S., & Wilson, M. (2010). Spatial and environmental consistency in serial sexual assault. Journal of Investigative Psychology and Offender Profiling, 7(1), 15-30.
Mårell, A., Ball, J. P., & Hofgaard, A. (2002). Foraging and movement paths of female reindeer: insights from fractal analysis, correlated random walks, and Lévy flights. Canadian Journal of Zoology, 80(5), 854-865.
McCabe, M. P., & Wauchope, M. (2005). Behavioural characteristics of rapists. Journal of sexual aggression, 11(3), 235-247.
McCulloch, C. E., & Cain, M. L. (1989). Analyzing discrete movement data as a correlated random walk. Ecology, 70(2), 383-388.
Melo, S. N. D., Frank, R., & Brantingham, P. (2017). Voronoi diagrams and spatial analysis of crime. The Professional Geographer, 69(4), 579-590.
Méndez, V., Campos, D., & Bartumeus, F. (2014). Anomalous diffusion and continuous-time random walks. In Stochastic foundations in movement ecology (pp. 113-148). Springer, Berlin, Heidelberg.
Morabito, M. S., Williams, L. M., & Pattavina, A. (2019). Decision making in sexual assault cases: replication research on sexual violence case attrition in the US.
Moses, S. K. (2019). Forensic Archaeology and the Question of Using Geographic Profiling Methods Such as “Winthropping. In Forensic Archaeology (pp. 235-244). Springer, Cham.
Nichols, B. (2019). Geographic Profiling: Contributions to the Investigation of Serial Murders (Doctoral dissertation, Wright State University).
Nonaka, E., & Holme, P. (2007). Agent‐based model approach to optimal foraging in heterogeneous landscapes: effects of patch clumpiness. Ecography, 30(6), 777-788.
Pan, C., Li, B., Wang, C., Zhang, Y., Geldner, N., Wang, L., & Bertozzi, A. L. (2018). Crime modeling with truncated Lévy flights for residential burglary models. Mathematical Models and Methods in Applied Sciences, 28(09), 1857-1880.
Perkins, C. A. (1997). Age patterns of victims of serious violent crime. US Department of Justice, Office of Justice Programs, Bureau of Justice Statistics.
Pint, B., Crooks, A., & Geller, A. (2010, October). Exploring the emergence of organized crime in Rio de Janeiro: An agent-based modeling approach. In 2010 Second Brazilian Workshop on Social Simulation (pp. 7-14). IEEE.
Quinn, A., Cooke, L., & Monaghan, M. (2019). An exploration of the progress of open crime data: how do ongoing limitations with the Police. uk website restrict a comprehensive understanding of recorded crime?. Policing and society, 29(4), 455-470.
Ratcliffe, J. H. (2005). Detecting spatial movement of intra-region crime patterns over time. Journal of Quantitative Criminology, 21(1), 103-123.
Rebocho, M. F., & Silva, P. (2014). Target selection in rapists: The role of environmental and contextual factors. Aggression and violent behavior, 19(1), 42-49.
Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S. J., & Chong, S. (2011). On the Lévy -walk nature of human mobility. IEEE/ACM transactions on networking, 19(3), 630-643.
Rodríguez, L., Palanca, J., del Val, E., & Rebollo, M. (2020). Analyzing urban mobility paths based on users’ activity in social networks. Future Generation Computer Systems, 102, 333-346.
Sarkar, D. (2019). Distance Operations. The Geographic Information Science & Technology Body of Knowledge (3rd Quarter 2019 Edition), John P. Wilson (ed.).
Seidel, D. P., Dougherty, E., Carlson, C., & Getz, W. M. (2018). Ecological metrics and methods for GPS movement data. International Journal of Geographical Information Science, 32(11), 2272-2293.
Sleeman, B. D., & Levine, H. A. (1997). A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM Journal on Applied Mathematics, 57(3), 683-730.
Smith, W., Bond, J. W., & Townsley, M. (2009). Determining how journeys-to-crime vary: measuring inter-and intra-offender crime trip distributions. In Putting crime in its place (pp. 217-236). Springer, New York, NY.
Snook, B. (2004). Individual differences in distance travelled by serial burglars. Journal of Investigative Psychology and Offender Profiling, 1(1), 53-66.
Snook, B., Cullen, R. M., Mokros, A., & Harbort, S. (2005). Serial murderers' spatial decisions: Factors that influence crime location choice. Journal of Investigative Psychology and Offender Profiling, 2(3), 147-164.
Tang, B., Jiang, C., He, H., & Guo, Y. (2016, July). Probabilistic human mobility model in indoor environment. In 2016 International Joint Conference on Neural Networks (IJCNN) (pp. 1601-1608). IEEE.
Tayebi, M. A., & Glässer, U. (2016). Personalized crime location prediction. In Social Network Analysis in Predictive Policing (pp. 99-126). Springer, Cham.
Tojo, C., & Argyrakis, P. (1996). Correlated random walk in continuous space. Physical Review E, 54(1), 58.
Van Moorter, B., Visscher, D., Benhamou, S., Börger, L., Boyce, M. S., & Gaillard, J. M. (2009). Memory keeps you at home: a mechanistic model for home range emergence. Oikos, 118(5), 641-652.
Wang, Q., Jin, G., Zhao, X., Feng, Y., & Huang, J. (2020). CSAN: A neural network benchmark model for crime forecasting in spatio-temporal scale. Knowledge-Based Systems, 189, 105120.
Wani, M. A., Shah, S. A., Skinder, S., Dar, S. N., Rather, K. A., Wani, S. A., & Malik, T. A. (2019). Mapping crimes against women: spatio-temporal analysis of braid chopping incidents in Kashmir Valley, India. GeoJournal, 1-14.
Warren, J., Reboussin, R., Hazelwood, R. R., Cummings, A., Gibbs, N., & Trumbetta, S. (1998). Crime scene and distance correlates of serial rape. Journal of Quantitative Criminology, 14(1), 35-59.
Wheeler, A. (2015). Predicting Locations of Interest with Biased Lévy Flights. In Proceedings on the International Conference on Artificial Intelligence (ICAI) (p. 189). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文