(3.238.96.184) 您好!臺灣時間:2021/05/18 15:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何盧福
研究生(外文):Avrilina LuthfilHadi
論文名稱:利用InSAR與GNSS資料探討印尼龍目島之震間變形特性及其構造意義
論文名稱(外文):Interseismic Deformation of the Lombok Island, Indonesia and Its Tectonic Implication from InSAR and GNSS Data
指導教授:景國恩景國恩引用關係
指導教授(外文):Kuo-En Ching
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量及空間資訊學系
學門:工程學門
學類:測量工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:75
中文關鍵詞:震間變形合成孔徑干涉雷達衛星定位系統三維速度反演
外文關鍵詞:Interseismic deformationInSARGPS3D velocity inversion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
龍目島屬印尼小巽他群島之一,位處活動斷層密集區域,北臨Flores 逆衝斷層,南為爪哇海溝,西部和東部則為龍目和松巴哇走滑斷層,地震活動十分頻繁。於2018年時,7月28日、8月5日、8月19日分別發生了一系列地震矩規模大於6.4的地震。然而,根據1979年美國地質調查局的地震目錄,近百年內Mw = 6級地震發生的頻率很低。為了瞭解龍目島構造的特性及其活動,本研究整合Sentinel 1A/B升軌及降軌的合成孔徑雷達干涉 (InSAR) 數據,以及2013年至2016年間已發布的12個GPS移動站速度場,計算高解析度的三維速度場。首先,本研究彙整所有可能的SAR影像,以InSAR Scientific Computing Environment (ISCE) 軟體生成干涉圖。接著,使用Generic InSAR analysis toolbox (GIAnT) 軟體,並採用短基線子集差分干涉法(Small Baseline subset,SBAS)建構了2014 年 10 月至 2018 年 7 月的Line of Sight (LOS) 位移時間序列。最後,透過最小平方法估計每個同調像元的LOS 速度。升軌方向的平均速度為每年12 mm,降軌則為每年0.5 mm。一般而言,濾除長波長雜訊後反演解算出的LOS 速度場不易呈現斷層變形特性,因此,需要將 LOS 速度分解為 E 和 U 分量,以瞭解地表變形的特性。最終,從反演估算而得之速度值,顯示整座龍目島西部的運動速率高於東部地區,這些結果亦顯示,龍目島的主要變形特性為擠壓及右向剪切。
Lombok Island, Indonesia, part of the Lesser Sunda Islands, has high seismic activity because it is surrounded by active faults: the Flores backarc thrust in the north, Lombok and Sumbawa strike-slip fault in the west and east of island, and the Java trench in the south. In 2018, an earthquake sequence with a magnitude larger than 6.4 occurred on 28 July, 5 August, and 19 August 2018, respectively. However, Mw 〉 6 earthquakes still rarely occur during a century based on the U.S Geological Survey earthquake catalog from 1979. To understand the characteristics of the tectonic setting of the Lombok Island and its behavior, I integrated the Interferometric Synthetic Aperture Radar (InSAR) data from Sentinel 1A/B ascending and descending direction and GPS data to construct the high-resolution 3D velocity field. The published 12 GPS campaign-mode velocities from 2013 to 2016 were utilized. First, I used all possible SAR images to generate interferograms using InSAR Scientific Computing Environment (ISCE) software. Then, I constructed the Line of Sight (LOS) displacement time series from October 2014 to July 2018 using Generic InSAR analysis toolbox (GIAnT) software with adopting a small baseline subset (SBAS) method. The LOS velocities were estimated using the least-squares method for each coherent pixel. The mean velocity from the ascending direction is 12 mm/yr, while descending is 0.5 mm/yr. The general pattern of LOS velocities doesn’t show the clearly fault-related deformation. Therefore, LOS velocity decomposition to E and U component is needed to understand the characteristic of surface deformation. Before the velocity inversion calculation, the long-wavelength noise has to be removed. The estimated velocities from inversion show a shortening pattern for the whole island. It is because the velocity in the west area is higher than the east part. These results also propose that the general deformation of Lombok Island is mainly under compression and right-lateral shearing.
摘要 i
Abstract iii
Acknowledgement iv
Table of Contents v
List of Tables vii
List of Figures viii
1. Introduction 1
2. Geological Setting 4
2.1 Java Subduction 4
2.2 Flores Backarc Thrust 6
2.3 Lombok Island 10
3. SAR Images Processing and GPS Data 17
3.1 SAR Images 17
3.2 Generate interferogram using ISCE 18
3.2.1 Preparing data 19
3.2.2 Executing the interferometric Program 19
3.3 SAR Time Series 33
3.4 Small Baseline Subset (SBAS) 36
4. Velocity field of Lombok Island 40
4.1 Velocity time series 40
4.2 Downsampling SAR 45
4.3 GPS velocity field 47
4.4 Comparison between GPS and InSAR 50
4.4.1 LOS velocity decomposition 50
4.5 3D Velocity Inversion 53
5. Discussions 65
5.1 Local Mechanism 65
5.2 Tectonic Implications 69
6. Conclusions 71
References 72
Abercrombie, R. E., Antolik, M., Felzer, K., & Ekström, G. (2001). The 1994 Java tsunami earthquake: Slip over a subducting seamount. Journal of Geophysical Research: Solid Earth, 106(B4), 6595–6607. https://doi.org/10.1029/2000jb900403
Abidin, H. Z., Andreas, H., Kao, T., Ito, T., Meilano, I., Kimata, F., et al. (2009). Crustal deformation studies in java (Indonesia) using GPS. Journal of Earthquake and Tsunami, 3(2), 77–88. https://doi.org/10.1142/S1793431109000445
Agram, P. S., Jolivet, R., & Simons, M. (2012). The Generic InSAR Analysis Toolbox, 100. Retrieved from earthdef.caltech.edu/attachments/download/15/GIAnT_doc.pdf
Agustawijaya, D. S., Sulistiyono, H., & Elhuda, I. (2018). Determination of the seismicity and peak ground acceleration for Lombok island: An evaluation on tectonic setting. MATEC Web of Conferences, 195. https://doi.org/10.1051/matecconf/201819503018
Chaussard, E., Johnson, C. W., Fattahi, H., & Bürgmann, R. (2016). Potential and limits of InSAR to characterize interseismic deformation independently of GPS data: Application to the southern San Andreas Fault system. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1002/2015GC006246
Dokht, R. M. H., Gu, Y. J., & Sacchi, M. D. (2018). Migration Imaging of the Java Subduction Zones. Journal of Geophysical Research: Solid Earth, 123(2), 1540–1558. https://doi.org/10.1002/2017JB014524
England, P., & Molnar, P. (1997). of Slip on Faults, 551–582.
England, P., & Molnar, P. (2005). Late Quaternary to decadal velocity fields in Asia. Journal of Geophysical Research: Solid Earth, 110(12), 1–27. https://doi.org/10.1029/2004JB003541
Fitch, T. J., North, R. G., & Shields, M. W. (1981). Focal depths and moment tensor representatives of shallow earthquakes associated with the Great Sumba earthquake. Journal of Geophysical Research, 86(B10), 9357–9374. https://doi.org/10.1029/JB086iB10p09357
Ganas, A., Tsironi, V., & Valkaniotis, S. (2018). A preliminary report on the 2018 Lombok region Indonesia earthquakes. Retrieved from https://www.emsc-csem.org/Files/news/Earthquakes_reports/Lombok earthquake report GTV 9-8-2018.pdf
Ganse, R. A., & Nelson, J. B. (1981). tables for the time of the event are used to convert foreign currency to dollars . An. Society, 72(3), 873–877.
Hall, R. (2009). INDONESIA , GEOLOGY, 454–460.
Hamilton, W. B. (1986). Tectonics and Island Arcs. Geological Society of America Bulletin, 100(1982), 1503 – 1527.
Harding, T. P., & Lowell, J. D. (1979). Structural Styles, Their Plate-Tectonic Habitats, and Hydrocarbon Traps in Petroleum Provinces1. AAPG Bulletin, 63(7), 1016–1058. https://doi.org/10.1306/2F9184B4-16CE-11D7-8645000102C1865D
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Zone Geometry Model, 61(October), 58–61.
Koulali, A., Susilo, S., McClusky, S., Meilano, I., Cummins, P., Tregoning, P., et al. (2016). Crustal strain partitioning and the associated earthquake hazard in the eastern Sunda-Banda Arc. Geophysical Research Letters, 43(5), 1943–1949. https://doi.org/10.1002/2016GL067941
Mccaffrey, R., & Nabelek, J. (1987). Sundo Se • J-, 92, 441–460.
McCaffrey, R. (1988). Active tectonics of the eastern Sunda and Banda arcs. Journal of Geophysical Research. https://doi.org/10.1029/jb093ib12p15163
Miller, M. M., & Shirzaei, M. (2015). Journal of Geophysical Research : Solid Earth and wavelet transforms, 5822–5842. https://doi.org/10.1002/2015JB012017.Received
Ningsih, F., Fitrianingsih, & Didik, L. A. (2019). Indonesian Physical Review. Indonesian Physical Review, 2(3), 1–8.
Rosen, P. A., Gurrola, E., Sacco, G. F., & Zebker, H. (2012). The InSAR Scientific Computing Environment. EUSAR 2012, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004
Silver, E. A., Reed, D., & McCaffrey, R. (1983). Back arc thrusting in the E Sunda arc, Indonesia: a consequence of arc-continent collision. Journal of Geophysical Research, 88(B9), 7429–7448. https://doi.org/10.1029/JB088iB09p07429
Silver, Eli A, Breen, N. A., Prasetyo, H., & Hussong, D. M. (1986). Kilomet, 91(4).
Sulaeman, C., & Minarno, P. A. (2019). Deformasi PulauLombok Berdasarkan Data GPS. Jurnal Lingkungan Dan Bencana Geologi, 10(1), 11. https://doi.org/10.34126/jlbg.v10i1.182
Supendi, P., Nugraha, A. D., Widiyantoro, S., Pesicek, J. D., Thurber, C. H., Abdullah, C. I., et al. (2020). Relocated aftershocks and background seismicity in eastern Indonesia shed light on the 2018 Lombok and Palu earthquake sequences. Geophysical Journal International, 221(3), 1845–1855. https://doi.org/10.1093/gji/ggaa118
Susilo, Kautsar, M. A., Wibowo, S. T., Basuki, A. Y., Efendi, J., Wijanarto, A. B., & Abidin, H. Z. (2018). Gps / Gnss Analysis on Lombok Earthquakes : Co-Seismic, (September), 2–7. https://doi.org/10.13140/RG.2.2.34871.78242
Takada, Y., Sagiya, T., & Nishimura, T. (2018). Interseismic crustal deformation in and around the Atotsugawa fault system, central Japan, detected by InSAR and GNSS. Earth, Planets and Space, 70(1). https://doi.org/10.1186/s40623-018-0801-0
Tim Pusat Studi Gempa Nasional. (2017). Buku Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017.
Tim Pusat Studi Gempa Nasional. (2018). Kajian Rangkaian Gempa Lombok Provinsi Nusa Tenggara Barat.
Tsukahara, K., & Takada, Y. (2018). Aseismic fold growth in southwestern Taiwan detected by InSAR and GNSS. Earth, Planets and Space, 70(1). https://doi.org/10.1186/s40623-018-0816-6
Wafid, Muhammad., Sugiyanto., Pramudyo, Tulus., S. (2014). Resume Hasil Kegiatan Pemetaan Geologi, 0–7.
Walters, R. J., Parsons, B., & Wright, T. J. (2014). Journal of Geophysical Research : Solid Earth Constraining crustal velocity fields with InSAR for Eastern Turkey : Limits to the block-like behavior. Jgr, 5215–5234. https://doi.org/10.1002/2013JB010909.Received
Wang, C., Wang, X., Xiu, W., Zhang, B., Zhang, G., & Liu, P. (2020). Characteristics of the Seismogenic Faults in the 2018 Lombok, Indonesia, Earthquake Sequence as Revealed by Inversion of InSAR Measurements. Seismological Research Letters, (March). https://doi.org/10.1785/0220190002
Wang, H., & Wright, T. J. (2012). Satellite geodetic imaging reveals internal deformation of western Tibet. Geophysical Research Letters, 39(7), 1–5. https://doi.org/10.1029/2012GL051222
Wang, K., & Bilek, S. L. (2014). Invited review paper: Fault creep caused by subduction of rough seafloor relief. Tectonophysics, 610, 1–24. https://doi.org/10.1016/j.tecto.2013.11.024
Widiyantoro, S., & Van Der Hilst, R. (1997). Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging. Geophysical Journal International, 130(1), 167–182. https://doi.org/10.1111/j.1365-246X.1997.tb00996.x
Xue, L., Schwartz, S., Liu, Z., & Feng, L. (2015). Interseismic megathrust coupling beneath the Nicoya Peninsula, Costa Rica, from the joint inversion of InSAR and GPS data. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1002/2014JB011844
Yang, X., Singh, S. C., & Tripathi, A. (2020). Did the Flores backarc thrust rupture offshore during the 2018 Lombok earthquake sequence in Indonesia? Geophysical Journal International, 221(2), 758–768. https://doi.org/10.1093/gji/ggaa018
Yip, S. T. H., Biggs, J., & Albino, F. (2019). Reevaluating Volcanic Deformation Using Atmospheric Corrections: Implications for the Magmatic System of Agung Volcano, Indonesia. Geophysical Research Letters, 46(23), 13704–13711. https://doi.org/10.1029/2019GL085233
Zhu, Y., Wang, K., & He, J. (2020). Effects of earthquake recurrence on localization of interseismic deformation around locked strike-slip faults. https://doi.org/10.1029/2020JB019817
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top